1. Mahmoudi, M. and S. Y. Tan, "Depth detection of conducting marine mines via eddy-current and current-channeling response," Progress In Electromagnetic Research, Vol. 90, 287-307, 2009.
doi:10.2528/PIER09011301 Google Scholar
2. Ji, W.-J. and C.-M. Tong, "Bistatic scattering from two-dimensional dielectric ocean rough surface with a PEC object partially embedded by using the G-smcg method," Progress In Electromagnetics Research, Vol. 105, 119-139, 2010.
doi:10.2528/PIER10041101 Google Scholar
3. Huang, C.-W. and K.-C. Lee, "Application of ica technique to PCA based radar target recognition," Progress In Electromagnetics Research, Vol. 105, 157-170, 2010.
doi:10.2528/PIER10042305 Google Scholar
4. Atteia, G. E. and K. F. A. Hussein, "Realistic model of dispersive soils using plrc-FDTD with applications to GPR systems," Progress In Electromagnetics Research B, Vol. 26, 335-359, 2010.
doi:10.2528/PIERB10083102 Google Scholar
5. Lu, T., K. Agarwal, Y. Zhong, and X. Chen, "Through-wall imaging: Application of subspace-based optimization method," Progress In Electromagnetics Research, Vol. 102, 351-366, 2010.
doi:10.2528/PIER10020903 Google Scholar
6. Hajihashemi, M. R. and M. El-Shenawee, "The level set shape reconstruction algorithm applied to 2D PEC targets hidden behind a wall," Progress In Electromagnetics Research B, Vol. 25, 131-154, 2010.
doi:10.2528/PIERB10072612 Google Scholar
7. Narayanan, R. M., M. C. Shastry, P.-H. Chen, and M. Levi, "Through-the-wall detection of stationary human targets using doppler radar," Progress In Electromagnetics Research B, Vol. 20, 147-166, 2010.
doi:10.2528/PIERB10022206 Google Scholar
8. Soldovieri, F., A. Brancaccio, G. Prisco, G. Leone, and R. Pierri, "A Kirchhoff-based shape reconstruction algorithm for the multimonostatic configuration: The realistic case of buried pipes," IEEE Trans. GeoSci. Remote Sensing, Vol. 46, No. 10, 3031-3038, 2008.
doi:10.1109/TGRS.2008.921959 Google Scholar
9. Xu, P., K.-S. Chen, and L. Tsang, "Analysis of microwave emission of exponentially correlated rough soil surfaces from 1.4 GHz to 36.5 GHz," Progress In Electromagnetics Research, Vol. 108, 205-219, 2010.
doi:10.2528/PIER10072703 Google Scholar
10. Prakash, R., D. Singh, and N. P. Pathak, "The effect of soil texture in soil moisture retrieval for specular scattering at C-band," Progress In Electromagnetics Research, Vol. 108, 177-204, 2010.
doi:10.2528/PIER10050403 Google Scholar
11. Butnor, J. R., M. L Pruyn, D. C. Shaw, M. E. Harmon, A. N. Mucciardi, and M. G. Ryan, "Detecting defects in conifers with ground penetrating radar: Applications and challenges," Forest Pathology, Vol. 39, No. 5, 309-322, 2009.
doi:10.1111/j.1439-0329.2009.00590.x Google Scholar
12. O'Halloran, M., M. Glavin, and E. Jones, "Rotating antenna microwave imaging system for breast cancer detection," Progress In Electromagnetics Research, Vol. 107, 203-217, 2010.
doi:10.2528/PIER10071002 Google Scholar
13. Conceição, R. C., M. O'Halloran, E. Jones, and M. Glavin, "Investigation of classifiers for early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research, Vol. 105, 295-311, 2010.
doi:10.2528/PIER10051904 Google Scholar
14. Conceição, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machines for the classification of early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010.
doi:10.2528/PIERB10062407 Google Scholar
15. Chen, G., Z. Zhao, Z. Nie, and Q. H. Liu, "Computational study of time reversal mirror technique for microwave-induced thermo-acoustic tomography," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 16, 2191-2204, 2008.
doi:10.1163/156939308787522555 Google Scholar
16. Davis, S. K., B. D. V. Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Trans. Biomed. Eng., Vol. 66, No. 1, 237-246, 2008.
doi:10.1109/TBME.2007.900564 Google Scholar
17. Pallav, P., G. G. Diamond, D. A. Hutchins, R. J. Green, and T. H. Gan, "A near-infrared technique for imaging food materials," Journal Food Science, Vol. 74, No. 1, E23-E33, 2009.
doi:10.1111/j.1750-3841.2008.01011.x Google Scholar
18. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701 Google Scholar
19. Zhang, H., S. Y. Tan, and H. S. Tan, "A flanged parallel-plate waveguide probe for microwave imaging of tumors," Progress In Electromagnetics Research, Vol. 97, 45-60, 2009.
doi:10.2528/PIER09090901 Google Scholar
20. Ruck, G. T., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook, Plenum Press, 1970.
21. Ang, T. W., S. Y. Tan, and H. S. Tan, "Analytical methods to determine diffraction points on multiple edges and cylindrical scatterers in UTD ray tracing," Microw. Opt. Tech. Lett., Vol. 22, No. 5, 304-309, 1999.
doi:10.1002/(SICI)1098-2760(19990905)22:5<304::AID-MOP5>3.0.CO;2-E Google Scholar
22. Sun, Q., S. Y. Tan, and K. C. Teh, "Analytical formulae for path loss prediction in urban street-grid microcellular environments," IEEE Trans. Veh. Tech., Vol. 54, No. 4, 1251-1258, 2005.
doi:10.1109/TVT.2005.851298 Google Scholar
23. Lazabnik, M., E. L Madsen, G. R. Frank, and S. C. Hagness, "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications," Phys. Med. Biol., Vol. 50, 4245-4258, 2005.
doi:10.1088/0031-9155/50/18/001 Google Scholar
24. Zhang, H., S. Y. Tan, and H. S. Tan, "Experimental study on flanged parallel-plate dielectric waveguide probe for early tumor detection," Journal of Electromagnetic Waves Applications, Vol. 24, No. 5-6, 681-693, 2010.
doi:10.1163/156939310791036287 Google Scholar
25. Zhang, H., S. Y. Tan, and H. S. Tan, "Microwave breast cancer detection via flanged parallel-plate dielectric waveguide probe," Proceedings of International Conference on Electromagnetics in Advanced Applications, 166-169, Torino, Italy, Sep. 2009. Google Scholar