1. Hasar, U. C., "Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies," Progress In Electromagnetics Research, Vol. 107, 31-46, 2010.
doi:10.2528/PIER10060805 Google Scholar
2. Hasar, U. C. and E. A. OralA, "Metric function for fast and accurate permittivity determination of low-to-high-loss materials from reflection measurements," Progress In Electromagnetics Research, Vol. 107, 394-412, 2010. Google Scholar
3. Hauschild, T. and R. K. Ochel, "Measurement of complex permittivity of solids up to 1000°C," Microwave Symposium Digest, 1687-1690, San Francisco, CA, USA, June 17-21, 1996. Google Scholar
4. Gershon, D. L., J. P. Calame, Y. Carmel, T. M. Antonsen, Jr., and R. M. Hutcheon, "Open-ended coaxial probe for high-temperature and broad-band dielectric measurements," IEEE Transactions on Microwave Theory and Technology, Vol. 56, No. 3, 684-692, 2008.
doi:10.1109/TMTT.2008.916986 Google Scholar
5. Ma, L. X., H. Zhang, and C. X. Zhang, "Analysis on the reflection characteristic of electromagnetic wave incidence in closed nonmagnetized plasma," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17-18, 2285-2296, 2008.
doi:10.1163/156939308787543877 Google Scholar
6. Wang, Z., W. Che, and L. Zhou., "Uncertainty analysis of the rational function model used in the complex permittivity measurement of biological tissues using PMCT probes within a wide microwave frequency band," Progress In Electromagnetics Research, Vol. 90, 137-150, 2009.
doi:10.2528/PIER09010403 Google Scholar
7. Baeraky, T. A., "Microwave measurements of dielectric properties of zinc oxide at high temperature," Egyptian Journal of Solids, Vol. 30, No. 1, 13-18, 2007. Google Scholar
8. Li, Y., J. Li, and X. He, "Study on high temperature dielectric properties of magnetic window materials by cavity resonator method," Journal of Infrared and Millimeter Waves, Vol. 23, No. 2, 157-160, April 2004. Google Scholar
9. Li, E., Z.-P. Nie, G. Guo, Q. Zhang, Z. Li, and F. He, "Broadband measurements of dielectric properties of low-loss materials at high temperatures using circular cavity method," Progress In Electromagnetics Research, Vol. 92, 103-120, 2009.
doi:10.2528/PIER09030904 Google Scholar
10. Waldron, R. A., "Theory of a strip-line cavity for measurement of dielectric constants and gyromagnetic-resonance line-widths," IEEE Transactions on Microwave Theory and Technology, Vol. 12, No. 1, 123-131, 1964.
doi:10.1109/TMTT.1964.1125760 Google Scholar
11. Waldron, R. A., "Theory of the strip-line cavity resonator," Marconi Rev., Vol. 27, 30-42, 1964. Google Scholar
12. Maxwell, S., "A stripline cavity resonator for measurement of ferrites," Microwave J., Vol. 9, 99-102, 1966. Google Scholar
13. Maxwell, S., "Strip-line cavity resonator for measurement of magnetic and dielectric properties of ferrites at low microwave frequencies," Marconi Rev., Vol. 27, 22-29, 1964. Google Scholar
14. Musal, H. M., "Demagnetization effect in strip-line cavity measurements," IEEE Transactions on Magnetics, Vol. 28, No. 5, 3129-3131, 1992.
doi:10.1109/20.179734 Google Scholar
15. Jones, C. A., "Permeability and permittivity measurements using stripline resonator cavities: A comparison," IEEE Transactions on Instrumentation and Measurement, Vol. 48, No. 4, 843-848, 1999.
doi:10.1109/19.779187 Google Scholar
16. Weil, C. M., C. A. Jones, Y. Kantur, and J. H. Grosvenor, Jr., "On RF material characterization in the stripline cavity," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 2, 266-275, 2000.
doi:10.1109/22.821774 Google Scholar
17. Wheeler, H. A., "Transmission-line properties of a strip line between parallel planes," IEEE Transactions on Microwave Theory and Techniques, Vol. 26, No. 11, 866-876, 1978.
doi:10.1109/TMTT.1978.1129505 Google Scholar
18. Crampagne, R., M. Ahmadpanah, and J.-L. Guiraud, "A simple method for determining the Green's function for a large class of MIC lines having multilayered dielectric structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 26, No. 2, 82-87, 1978.
doi:10.1109/TMTT.1978.1129317 Google Scholar
19. Shackelford, J. F. and W. Alexander, CRC Materials and Engineering Handbook, CRC Press, 2001.