Vol. 112
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-01-15
Computation of Periodic Green's Functions in Layered Media Using Complex Images Technique
By
Progress In Electromagnetics Research, Vol. 112, 225-240, 2011
Abstract
In this paper a new method based on the complex images technique has been presented to efficiently compute the Green's functions required in a Mixed Potential Integral Equation (MPIE) analysis of a periodic structure located in a layered medium. This method leads to a closed-form representation for these slowly convergent series valid for sub-wavelength as well as super-wavelength cell sizes for all source point to field point distances. Comparison between the results obtained by the proposed method with ones obtained from other numerical approaches verifies its accuracy. Fast convergence, simple final form and versatility of the proposed method are its main advantages which make it suitable for the analysis of the periodic structures using the integral equation techniques.
Citation
H. Bahadori Hadiseh Alaeian Reza Faraji-Dana , "Computation of Periodic Green's Functions in Layered Media Using Complex Images Technique," Progress In Electromagnetics Research, Vol. 112, 225-240, 2011.
doi:10.2528/PIER10113004
http://www.jpier.org/PIER/pier.php?paper=10113004
References

1. Maleki Javan, A. R. and N. Granpayeh, "Fast terahertz wave switch/modulator based on photonic crystal structures," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2--3, 203-212, 2009.
doi:10.1163/156939309787604571

2. Khalilpour, J. and M. Hakkak, "S-shaped ring resonator as anisotropic uniaxial metamaterial used in waveguide tunneling," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1763-1772, 2009.
doi:10.1163/156939309789566879

3. Collin, R. E., Field Theory of Guided Waves, , IEEE Press, New York, 1991.

4. Watanabec, K. and K. Yasumoto, "Accuracy improvement of the fourier series expansion method for floquet-mode analysis of photonic crystal waveguides," Progress In Electromagnetics Research, Vol. 92, 209-222, 2009.
doi:10.2528/PIER09032704

5. Singh, S., W. F. Richards, J. R. Zinecker, and D. R. Wilton, "Accelerating the convergence of series representing the free periodic Green's function," IEEE Trans. Antennas Propag., Vol. 38, No. 12, 1958-1962, Dec. 1990.
doi:10.1109/8.60985

6. Singh, S. and R. Singh, "On the use of ρ-algorithm in series acceleration," IEEE Trans. Antennas Propag., Vol. 39, No. 10, 1514-1517, Oct. 1991.
doi:10.1109/8.97383

7. Jorgenson, R. E. and R. Mittra, "Efficient calculation of the free space periodic Green's function," IEEE Trans. Antennas Propag., Vol. 38, No. 5, 633-642, May 1990.
doi:10.1109/8.53491

8. Papaniicolaou, V. G., "Ewald's method revised rapidly convergent series representations of certain Green's functions," J. Comput. Anal. Applicat., Vol. 1, No. 1, 105-114, 1999.
doi:10.1023/A:1022622721152

9. Stevanovi'c, I., P. Crespo-Valero, K. Blagovic, F. Bongard, and J. R. Mosig, "Integral-equation analysis of 3-d metallic objects arranged in 2-D lattices using the Ewald transformation," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 10, 3688-3697, Oct. 2006.
doi:10.1109/TMTT.2006.882876

10. Capolino, F., D. W. Wilton, and W. A. Johnson, "Efficient computation of the 2-D Green's function for 1-D periodic structures using the Ewald method," IEEE Trans. Antennas Propag., Vol. 53, No. 9, 2977-2984, Sep. 2005.
doi:10.1109/TAP.2005.854556

11. Park, M. J. and S. Nam, "Efficient calculation of the Green's function for multilayered planar periodic structures," IEEE Trans. Antennas Propag,, Vol. 46, No. 10, 1582-1583, Dec. 1998.
doi:10.1109/8.725293

12. Silveirinha, M. G. and C. A. Fernandes, "A new acceleration technique with exponential convergence rate to evaluate periodic Green's functions," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 347-355, Jan. 2005.
doi:10.1109/TAP.2004.838793

13. Chow, Y. L., J. J. Yang, D. G. Fang, and G. E. Howard, "A closed-form spatial Green's function for the thick microstrip substrate," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 3, Mar. 1991.
doi:10.1109/22.75309

14. Kipp, R. A. and C. H. Chan, "A numerically efficient technique for the method of moments solution for planar periodic structures in layered media," IEEE Trans. Microwave Theory Tech., Vol. 42, 635-643, Apr. 1994.
doi:10.1109/22.285070

15. Shubair, R. M. and Y. L. Chow, "Efficient computation of the periodic Green's function in layered dielectric media," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 3, Mar. 1993.
doi:10.1109/22.223751

16. Alaeian, H. and R. Faraji-Dana, "Accurate and fast computation of the Green's function of periodic structures using complex images technique," 2007 IEEE Antennas and Propagation International Symposium, Honolulu, 2007.

17. Jarchi, S., J. Rashed-Mohassel, and R. Faraji-Dana, "Analysis of microstrip dipole antennas on a layered metamaterial substrate," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5--6, 755-764, 2010.
doi:10.1163/156939310791036278

18. Alaeian, H. and R. Faraji-Dana, "A novel Green's function analysis of wave scattering by an infinite grating using complex images technique," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 24, No. 5, 511-517, Oct. 2009.

19. Hua, Y. and T. K. Sarkar, "Generalized Pencil-of-Function method for extracting poles of an EM system from its transient response," IEEE Trans. Antennas Propag., Vol. 37, 229-234, 1989.
doi:10.1109/8.18710

20. Chow, Y. L., "An approximate dynamic spatial Green's function in three dimensions for finite length misrostrip lines," IEEE Trans. Microwave Theory Tech., Vol. 28, 393-397, 1980.
doi:10.1109/TMTT.1980.1130082