1. "Special issue on multifunction antennas and antenna systems," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 2006. Google Scholar
2. Martnez-Vazquez, M., O. Litschke, M. Geissler, D. Heberling, A. M. Martnez-Gonzalez, and D. Sanchez-Hernandez, "Integrated planar multiband antennas for personal communication handsets," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 2006. Google Scholar
3. Garg, R., P. Barthia, I. Bahl, and A. Ittipiboon, Microstrip Design Handbook, Artech House, 2000.
4. James, J. R. and P. S. Hall, Handbook of Microstrip Antennas, Peter Peregrinus, London, 1989.
doi:10.2528/PIER09032401
5. Heidari, A. A., M. Heyrani, and M. Nakhkash, "A dual-band circularly polarized stub loaded microstrip patch antenna for GPS applications," Progress In Electromagnetics Research, Vol. 92, 195-198, 2009.
doi:10.2528/PIERC09010704 Google Scholar
6. Wang, E., J. Zheng, and Y. Liu, "A novel dual-band patch antenna for WLAN communication," Progress In Electromagnetic Research C, Vol. 6, 93-102, 2009.
doi:10.2528/PIERC09071007 Google Scholar
7. Mishra, A., P. Singh, N. P. Yadav, J. A. Ansari, and B. R. Vishvakarma, "Compact shorted microstrip patch antenna for dual-band operation," Progress In Electromagnetics Research C, Vol. 9, 171-182, 2009.
doi:10.1109/74.646798 Google Scholar
8. Maci, S. and G. Biffi Gentili, "Dual-frequency patch antennas," IEEE Antennas and Propagation Magazine, Vol. 39, No. 6, 1997. Google Scholar
9. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters, John Wiley & Sons, Hoboken, NJ, 2007.
10. Caloz, C. and T. Itoh, "Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications," Wiley, New York, 2004. Google Scholar
11. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley-IEEE Press, August 2006.
12. Eleftheriades, G. V. and K. G. Balmain, Negative-refraction Metamaterials: Fundamental Principles and Applications, Willey-IEEE Press, July 2005.
13. Herraiz-Martnez, F. J., L. E. Garcia-Munoz, D. Gonzalez-Ovejero, V. Gonzalez-Posadas, D. Segovia-Vargas, and , "Dualfrequency printed dipole loaded with split ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009.
doi:10.1109/TAP.2008.927518 Google Scholar
14. Herraiz-Martinez, F. J., V. Gonzalez-Posadas, L. E. Garcia-Munoz, and D. Segovia-Vargas, "Multifrequency and dual patch antennas partially filled with left-handed structures," IEEE Trans. on Antennas and Propagation, Vol. 56, No. 8, 2527-2539, 2008. Google Scholar
15. Herraiz-Martinez, F. J., E. Ugarte-Munoz, V. Gonzalez-Posadas, L. E. Garca-Munoz, and D. Segovia-Vargas, "Self-diplexed patch antennas based on metamaterials for active RFID systems," IEEE Trans. on Microwave Theory and Techniques, Vol. 57, No. 5, Part 2, 1330-1340, 2009.
doi:10.1109/TAP.2008.922889 Google Scholar
16. Barba, M., "A high-isolation, wideband and dual-linear polarization patch antenna," IEEE Trans. on Antennas and Propagation, Vol. 56, No. 5, 1472-1476, 2008.
doi:10.1109/TAP.2009.2029375 Google Scholar
17. Sim, C. D., C. C. Chang, and J. S. Row, "Dual-feed dual-polarized patch antenna with low cross polarization and high isolation," IEEE Trans. on Antennas and Propagation, Vol. 57, No. 10, 3405-3409, 2009.
doi:10.1109/TMTT.2004.827013 Google Scholar
18. Chung, Y., S. S. Jeon, S. Kim, D. Ahn, J. I. Choi, and T. Itoh, "Multifunctional microstrip transmission lines integrated with defected ground structure for RF front-end application," IEEE Trans. on Microwave Theory and Techniques, Vol. 52, No. 5, 1425-1432, 2004.
doi:10.2528/PIER09040105 Google Scholar
19. Andres-Garcia, B., L. E. Garcia-Munoz, V. Gonzalez-Posadas, F. J. Herraiz-Martnez, and D. Segovia-Vargas, "Filtering lens structure based on SRRs in the low THz band," Progress In Electromagnetic Research, Vol. 93, 71-90, 2009. Google Scholar
20. Kim, D.-O., N.-I. Jo, H.-A. Jang, and C.-Y. Kim, "Design of the ultrawideband antenna with a quadruple-band rejection characteristics using a combination of the complementary split ring resonators," Progress In Electromagnetics Research, Vol. 112, 93-107, 2011.
doi:10.2528/PIERL09012005 Google Scholar
21. Duan, Z., S. Qu, and Y. Hou, "Electrically small antenna inspired by spired split ring resonators," Progress In Electromagnetics Research Letters, Vol. 7, 47-57, 2009. Google Scholar
22. Kim, D.-O., N.-I. Jo, D.-M. Choi, and C.-Y. Kim, "Design of the ultra-wideband antenna with 5.2 GHz/5.8 GHz band rejection using rectangular split-ring resonators (SRRs) loading," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2503-2512, 2009.
doi:10.1163/156939310793699127 Google Scholar
23. Liu, Y., X. Chen, and K. Huang, "A novel planar printed array antenna with SRR slots," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2155-2164, 2010.
doi:10.2528/PIER09052801 Google Scholar
24. Monti, G. and L. Tarricone, "Negative group velocity in a split ring resonator-coupled microstrip line," Progress In Electromagnetic Research, Vol. 94, 33-47, 2009.
doi:10.1109/TMTT.2005.845211 Google Scholar
25. Baena, J. D., J. Bonache, F. Martin, R. Marques Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. Flores Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines ," IEEE Trans. on Microwave Theory and Techniques, Vol. 53, No. 4, 1451-1461, 2005.
doi:10.1109/LMWC.2006.887246 Google Scholar
26. Martel, J., J. Bonache, R. Marques, F. Martin, and F. Medina, "Design of wide-band semi-lumped bandpass filters using open split ring resonators," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 1, January 2007. Google Scholar