1. Nass, S. L., I. C. Henderson, and J. C. Lashof, Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer , National Academy Press, 2001.
2. Bird, R. E., T. W. Wallace, and B. C. Yankaskas, "Analysis of cancers missed at screening mammograph," Radiology, Vol. 184, 613-617, 1992. Google Scholar
3. Huynh, P. H., A. M. Jarolimek, and S. Daye, "The false-negative mammogram," RadioGraphics, Vol. 18, 1137-1154, 1998. Google Scholar
4. Elmore, J. G., M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, "Ten-year risk of false positive screening mammograms and clinical breast examinations," New Eng. J. Med., Vol. 338, No. 16, 1089-1096, 1998.
doi:10.1056/NEJM199804163381601 Google Scholar
5. Hall, F. M., J. M. Storella, D. Z. Silverstone, and G. Wyshak, "Non-palpaple breast-lesions, recommendations for biopsy based on suspicion of carcinoma at mammography ," Radiology, Vol. 167, No. 2, 353-358, 1988. Google Scholar
6. Zainud-Deen, S., W. Hassen, E. Ali, and K. Awadalla, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703 Google Scholar
7. AlShehri, S. and S. Khatun, "UWB imaging for breast cancer detection using neural network," Progress In Electromagnetics Research C, Vol. 7, 79-93, 2009.
doi:10.2528/PIERC09031202 Google Scholar
8. Maskooki, A., E. Gunawan, C. Soh, and K. Low, "Frequency domain skin artifact removal method for ultra-wideband breast cancer detection ," Progress In Electromagnetics Research, Vol. 98, 299-314, 2009.
doi:10.2528/PIER09101302 Google Scholar
9. Conceicao, R. C., D. Byrne, M. O'Halloran, M. Glavin, and E. Jones, "Comparison of planar and circular antenna configurations for breast cancer detection using microwave imaging," Progress In Electromagnetics Research, Vol. 99, 1-19, 2009.
doi:10.2528/PIER09100204 Google Scholar
10. Nguyen, M. and R. Rangayyan, "Shape analysis of breast masses in mammograms via the fractial dimension," 27th Annual Conference of the IEEE Engineering in Medicine and Biology, 3210-3213, 2005.
doi:10.1109/IEMBS.2005.1617159 Google Scholar
11. Chen, Y., I. Craddock, and P. Kosmas, "Feasibility study of lesion classification via contrast-agent-aided uwb breast imaging," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 5, 1003-1007, 2010.
doi:10.1109/TBME.2009.2038788 Google Scholar
12. Chen, Y., I. Craddock, P. Kosmas, M. Ghavami, and P. Rapajic, "Application of the mimo radar technique for lesion classification in UWB breast cancer detection ," 17th European Signal Processing Conference (EUSIPCO), 759-763, 2009. Google Scholar
13. Multiple-input multiple-output radar for lesion classification in ultrawideband breast imaging "IEEE Journal of Selected Topics in Signal Processing,", Vol. 4, No. 1, 187-201, 2010. Google Scholar
14. Conceicao, R. C., D. Byrne, M. O'Halloran, E. Jones, and M. Glavin, "Investigation of classifiers for early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research, Vol. 105, 295-311, 2010.
doi:10.2528/PIER10051904 Google Scholar
15. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machines for the classification of early-stage breast cancer based on radar target signatures ," Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010.
doi:10.2528/PIERB10062407 Google Scholar
16. Davis, S. K., B. D. V. Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband backscatter," IEEE Trans. Biomed. Eng., Vol. 55, No. 1, 237-246, 2008.
doi:10.1109/TBME.2007.900564 Google Scholar
17. Muinonen, K., "Introducing the gaussian shape hypothesis for asteroids and comets ," Astronomy and Astrophysics, Vol. 332, 1087-1098, 1998. Google Scholar
18. Muinonen, K., "Light Scattering by Stochastically Shaped Particles," Chapter 11, Academic Press, 2000. Google Scholar
19. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C., "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries ," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001 Google Scholar
20. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
21. Taflove, A. and S. C. Hagness, "Computational Electrodynamics: The Finite-difference Time-domain Method," Artech House, Publishers, June 2005. Google Scholar
22. Maass, W., "Computation with spiking neurons," The Handbook of Brain Theory and Neural Networks, 1080-1083, 2003. Google Scholar
23. Gerstner, W. and W. Kistler, "Spiking Neuron Models," Cambridge University Press, New York, 2002. Google Scholar
24. Maass, W., "Networks of spiking neurons: The third generation of neural network models," Neural Networks, Vol. 10, No. 9, 1659-1671, 1997.
doi:10.1016/S0893-6080(97)00011-7 Google Scholar
25. Maass, W., "Computing with spiking neurons," Pulsed Neural Networks, MIT Press, 85, 1999.
doi:10.1016/S0893-6080(97)00011-7 Google Scholar
26. Maguire, L., T. McGinnity, B. Glackin, A. Ghani, A. Belatreche, and J. Harkin, "Challenges for large-scale implementations of spiking neural networks on FPGAs," Neurocomputing, Vol. 71, No. 1-3, 13-29, 2007.
doi:10.1016/j.neucom.2006.11.029 Google Scholar
27. Floreano, D., N. Schoeni, G. Caprari, and J. Blynel, "Evolutionary bits'n'spikes," Artificial Life Eight, 335, 2003. Google Scholar
28. Morgan, F., S. Cawley, B. McGinley, S. Pande, L. McDaid, B. Glackin, J. Maher, and J. Harkin, "Exploring the evolution of NoC-based spiking neural networks on FPGAs," IEEE International Conference on Field-programmable Technology, 2009 FPT , 300-303, 2010. Google Scholar
29. Holland, J., "Adaptation in Natural and Artificial Systems," MIT Press, Cambridge, MA, 1992. Google Scholar
30. Yao, X., "Evolving artificial neural networks," Proceedings of the IEEE, Vol. 87, No. 9, 1423-1447, 1999.
doi:10.1109/5.784219 Google Scholar
31. Hagras, H., A. Pounds-Cornish, M. Colley, V. Callaghan, and G. Clarke, "Evolving spiking neural network controllers for autonomous robots," IEEE International Conference on Robotics and Automation, Vol. 5, 4620-4626, 2004. Google Scholar
32. Floreano, D., N. Schoeni, G. Caprari, and J. Blynel, "Evolutionary bits'n'spikes," Proceedings of the Eighth International Conference on Artificial Life , 335-344, 2003. Google Scholar
33. Belatreche, A., L. P. Maguire, M. McGinnity, and Q. X. Wu, "Evolutionary design of spiking neural networks," New Mathematics and Natural Computation (NMNC), Vol. 2, No. 3, 237-253, 2006.
doi:10.1142/S179300570600049X Google Scholar
34. McGinley, B., M. O'Halloran, R. C. Conceicao, F. Morgan, M. Glavin, and E. Jones, "Spiking neural networks for breast cancer classification using radar target signatures," Progress In Electromagnetics Research C, Vol. 17, 79-94, 2010.
doi:10.2528/PIERC10100202 Google Scholar
35. Rocke, P., B. McGinley, J. Maher, F. Morgan, and J. Harkin, "Investigating the suitability of FPAAs for evolved hardware spiking neural networks ," Proceedings of Evolvable Systems: From Biology to Hardware, 118-126, 2008.
doi:10.1007/978-3-540-85857-7_11 Google Scholar
36. Kasabov, N., Evolving Connectionist Systems: The Knowledge Engineering Approach, Springer-Verlag Inc., New York, 2007.
37. Kasabov, N., "Integrative connectionist learning systems inspired by nature: Current models, future trends and challenges," Natural Computing, Vol. 8, No. 2, 199-218, 2009.
doi:10.1007/s11047-008-9066-z Google Scholar
38. Schliebs, S., M. Defoin-Platel, S. Worner, and N. Kasabov, "Integrated feature and parameter optimization for an evolving spiking neural network: Exploring heterogeneous probabilistic models ," Neural Networks, Vol. 22, No. 5-6, 623-632, 2009.
doi:10.1016/j.neunet.2009.06.038 Google Scholar
39. Pande, S., F. Morgan, S. Cawley, B. McGinley, S. Carrillo, L. McDaid, and J. Harkin, "Embrace-sysc for analysis of noc-based spiking neural network architecture," IEEE System on a Chip Symposium (SOC), 2010. Google Scholar