1. FCC, , Final Rule of the Federal Communications Commission, Vol. 67, No. 95, 47 CFR, Part 15, Sec. 503, Federal Register, May 2002.
2. WiMedia, Alliance, "Multiband OFDM physical layer specifications: Physical specification: Final deliverable Version 1.5,", 2009. Google Scholar
3. UWB Forum, www.uwbforum.org.
doi:10.1109/WCSP.2009.5371726
4. Murad, S. A. Z., R. K. Pokharel, H. Kanaya, and K. Yoshida, "A 3.0--7.5 GHz CMOS UWB PA for group 1~3 MB-OFDM application using current-reused and shunt-shunt feedback," IEEE International Conference on Wireless Communications and Signal Processing (WCSP 2009), 1-4, 2009.
doi:10.2528/PIER10041808 Google Scholar
5. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenny, "Bandwidth enhancement of an analog feedback amplifier by employing a negative group delay circuit," Progress In Electromagnetics Research, Vol. 105, 253-272, 2010. Google Scholar
6. Lee, S.-Y. and G.-D. Lu, "A UWB CMOS power amplifier with differential to single-ended converter," IEEE International Symposium on VLSI Design (VAD), 314-317, 2007.
doi:10.1163/156939310791036412 Google Scholar
7. Yoon, J., H. Seo, I. Choi, and B. Kim, "Wideband LNA using negative gm cell for improvement of linearity and noise figure," Journal of Electromagnetic Waves Applications, Vol. 24, No. 5--6, 619-630, 2010.
doi:10.1109/ISCAS.2005.1465784 Google Scholar
8. Jose, S., H. J. Lee, H. Dong, and S. S. Choi, "A low power CMOS power amplifier for ultra wideband (UWB) applications," IEEE International Symposium on Circuits and Systems, 5111-5114, 2005. Google Scholar
9. Han, C. H., W. W. Zhi, and K. M. Gin, "A low power CMOS full-band UWB power amplifier using wideband RLC matching method," IEEE Conference on Electron Devices and Solid-State Circuit, 223-236, 2005. Google Scholar
10. Lu, C., A. V. Pham, and M. Shaw, "A CMOS power amplifier for full-band UWB transmitters," IEEE Symposium on Radio Frequency Integrated Circuit, 397-400, 2006.
doi:10.1109/APCCAS.2006.342446 Google Scholar
11. Wang, R. L., Y. K. Su, and C. Liu, "3--5 GHz cascoded UWB power amplifier," IEEE Asia Pacific Conference on Circuits and Systems, 367-369, 2006.
doi:10.1163/156939310793675619 Google Scholar
12. Lee, M.-W., S.-H. Kam, Y.-S. Lee, and Y.-H. Jeong, "A highly efficient three-stage Doherty power amplifier with flat gain for WCDMA applications," Journal of Electromagnetic Waves Applications, Vol. 24, No. 17--18, 2537-2545, 2010. Google Scholar
13. Ellinger, F., Radio Frequency Integrated Circuits and Technologies, Springer-Verlag Berlin Heidelberg, 2007.
14. Lee, T. H., The Design of CMOS Radio-frequency Integrated Circuits, 2nd Ed., Cambridge Univ. Press, 2004.
doi:10.2528/PIER10060806
15. Zhang, B., Y.-Z. Xiong, L. Wang, S. Hu, T.-G. Lim, Y.-Q. Zhuang, and L.-W. Li, "A D-band power amplifier with 30-GHz bandwidth and 4.5-dBm psat for high-speed communicationc system," Progress In Electromagnetics Research, Vol. 107, 161-178, 2010. Google Scholar
16. Anderson, S., C. Svensson, and O. Drugge, "Wideband LNA for a multistandard wireless receiver in 0.18 μm process," European Solid-State Circuits Conference, 655-658, 2003.
doi:10.2528/PIER09071609 Google Scholar
17. Jimenez Martin, J. L., V. Gonzalez-Posadas, J. E. Gonzalez-Garcia, F. J. Arques-Orobon, L. E. Garcia Munoz, and D. Segovia-Varga, "Dual band high efifciency class CE power amplifier based on CRLH diplexer," Progress In Electromagnetics Research, Vol. 97, 217-240, 2009. Google Scholar
18. Cripps, S., RF Power Amplifiers for Wireless Communications,, Artech House, 1999.
19. Razavi, B., Design of Analog CMOS Integrated Circuits, McGraw Hill, 2001.
doi:10.1109/22.899960
20. Ferrero, A., V. Teppati, and A. Carullo, "Accuracy evaluation of On-Wafer load-pull measurement," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 1, 39-43, 2001.
doi:10.1109/TMTT.2005.854218 Google Scholar
21. Choon, B. S., H. O. Beng, S. Y. Kiat, J.-G. Ma, and A. D. Manh, "Accurate and scalable RF interconnect model for silicon-based RFIC applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 9, 3035-3044, 2005.
doi:10.1109/TVLSI.2005.857177 Google Scholar
22. Shi, X.-M., J.-G. Ma, S. Y. Kiat, A. D. Manh, and E.-P. Li, "Equivalent circuit model of On-Wafer CMOS interconnects for RFICs," IEEE Transactions on Very Large Scale Integration (VLSI) System, Vol. 13, No. 9, 1060-1071, 2005.
doi:10.1163/156939310791285218 Google Scholar
23. Sharma, R., T. Chakravarty, and A. B. Bhattacharyya, "Reduction of signal overshoots in high-speed interconnects using adjacent ground tracks," Journal of Electromagnetic Waves Applications, Vol. 24, No. 7, 941-950, 2010.
doi:10.2528/PIER09091707 Google Scholar
24. Wu, B. and L. Tsang, "Full-wave modeling of multiple vias using differential signaling and shared antipad in multilayered high speed vertical interconnects," Progress In Electromagnetics Research, Vol. 97, 129-139, 2009. Google Scholar
25. Agilent, Technologies, "Amplifier parameters reference," 2007.,", 2007. Google Scholar
26. Agilent Technologies, P2D simulations, 2005.
27. Dunleavy, L. P. and L. Jiang, "Understanding P2D nonlinear models," Microwave Journals, 2007.
doi:10.1504/IJCNDS.2008.020712 Google Scholar
28. Wong, S.-K., K. Fabian, M. Siti, and J.-H. See, "Ultra-wideband (UWB) CMOS power amplifier design and implementation," Int. Journals of Communication Networks and Distributed System (IJCNDS), Vol. 1, No. 3, 296-311, 2008. Google Scholar
29. Rivas-T, W., "Using S-parameter data effectively," Planet Analog Magazine, 2007.
doi:10.1017/CBO9780511805738 Google Scholar
30. Niknejad, A. M., Electromagnetics for High-speed Analog and Digital Communication Circuits, Cambridge Univ. Press, 2007.
31. Sayre, C. W., "Complete Wireless Design," Mc-Graw Hill, 2008. Google Scholar