1. Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Q. Li, and Z. Xu, "A planar zero-index metamaterial for directive emission," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 953-962, 2009.
doi:10.1163/156939309788355289 Google Scholar
2. Sabah, C. and S. Uckun, "Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306 Google Scholar
3. Khalilpour, J. and M. Hakkak, "S-shaped ring resonator as anisotropic uniaxial metamaterial used in waveguide tunneling," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1763-1772, 2009.
doi:10.1163/156939309789566879 Google Scholar
4. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409 Google Scholar
5. Zhu, B., C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Dual band switchable metamaterial electromagnetic absorber," Progress In Electromagnetics Research B, Vol. 24, 121-129, 2010.
doi:10.2528/PIERB10070802 Google Scholar
6. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 2074021-2074024, 2008. Google Scholar
7. Zhu, B., Z. Wang, Y. Z. Zhong, Z. Qi, J. Zhao, Y. J. Feng, and T. Jiang, "Planar metamaterial microwave absorber for all wave polarizations ," Chin. Phys. Lett., Vol. 26, No. 11, 114102, 2009.
doi:10.1088/0256-307X/26/11/114102 Google Scholar
8. Zhu, B., Z. Wang, C. Huang, Y. J. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110 Google Scholar
9. Cheng, Q., T. J. Cui, W. X. Jiang, and B. G. Cai, "An omnidirectional electromagnetic absorber made of metamaterials," New J. Phys., Vol. 12, 063006, 2010.
doi:10.1088/1367-2630/12/6/063006 Google Scholar
10. Huang, R. F., Z. W. Li, L. B. Kong, L. Liu, and S. Matitsine, "Analysis and design of an ultra-thin metamaterial absorber," Progress In Electromagnetics Research B, Vol. 14, 407-429, 2009.
doi:10.2528/PIERB09040902 Google Scholar
11. Gu, C., S. Qu, Z. Pei, H. Zhou, and J. Wang, "A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber ," Progress In Electromagnetics Research Letters, Vol. 17, 171-179, 2010.
doi:10.2528/PIERL10070105 Google Scholar
12. Ye, Y., Y. Jin, and S. He, "Omni-directional, broadband and polarization-sensitive thin absorber in the terahertz regime," Journal of the Optical Society of America B, Vol. 27, No. 3, 498-504, 2010.
doi:10.1364/JOSAB.27.000498 Google Scholar
13. Wen, Q. Y., H. W. Zhang, Y. S. Xie, Q. H. Yang, and . L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phy. Lett., Vol. 95, 241111, 2009.
doi:10.1063/1.3276072 Google Scholar
14. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication, and characterization," Opt. Express, Vol. 16, 7181, 2008.
doi:10.1364/OE.16.007181 Google Scholar
15. Avitzour, Y., Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B, Vol. 79, 045131, 2009.
doi:10.1103/PhysRevB.79.045131 Google Scholar
16. Liu, X. L., S. Tatiana, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance ," Phys. Rev. Lett., Vol. 104, 207403, 2010.
doi:10.1103/PhysRevLett.104.207403 Google Scholar
17. Hu, C. G. and X. G. Luo, "Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies," Opt. Express, Vol. 17, 19, 2009.
doi:10.1364/OE.17.001308 Google Scholar
18. Diem, M., T. Koschny, and C. M. Soukoulis, "Wide-angle perfect absorber/thermal emitter in the terahertz regime," Phys. Rev. B, Vol. 79, 033101, 2009.
doi:10.1103/PhysRevB.79.033101 Google Scholar
19. Narimanov, E. E. and A. V. Kildishev, "Optical black hole: Broadband omnidirectional light absorber," Appl. Phy. Lett., Vol. 95, 041106, 2009.
doi:10.1063/1.3184594 Google Scholar
20. Chen, X. D., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608 Google Scholar
21. Microwave Studio (MWS) is a registered trademark of CST GmbH, Darmstadt, Germany.
22. Zhou, J. F., T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, "Experimental demonstration of negative index of refraction," Appl. Phy. Lett., Vol. 88, 221103, 2006.
doi:10.1063/1.2208264 Google Scholar
23. Khalilpour, J. and M. Hakkak, "S-shaped ring resonator as anisotropic uniaxial metamaterial used in waveguide tunneling," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1763-1772, 2009.
doi:10.1163/156939309789566879 Google Scholar
24. Mirzavand, R., B. Honarbakhsh, A. Abdipour, and . Tavakoli, "Metamaterial-based phase shifters for ultra wide-band applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1489-1496, 2009.
doi:10.1163/156939309789476446 Google Scholar
25. Wu, Z., B. Q. Zeng, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.
doi:10.1163/156939310791285173 Google Scholar