1. Genet, C. and T. W. Ebbesen, "Light in tiny holes," Nature, Vol. 445, 39-46, 2007.
doi:10.1038/nature05350 Google Scholar
2. Bethe, H. A. and Theory of diffraction by small holes, Phys. Rev., Vol. 66, 163-182, 1944.
doi:10.1103/PhysRev.66.163 Google Scholar
3. Garcia-Vidal, F. J., E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett., Vol. 95, 103901, 2005.
doi:10.1103/PhysRevLett.95.103901 Google Scholar
4. Chang, C. W., A. K. Sarychev, and V. M. Shalaev, "Light di®raction by a subwavelength circular aperture," Laser Phys. Lett., Vol. 2, 351-355, 2005.
doi:10.1002/lapl.200510006 Google Scholar
5. Popov, E., N. Bonod, M. Neviµere, H. Rigneault, P.-F. Lenne, and P. Chaumet, "Surface plasmon excitation on a single subwavelength hole in a metallic sheet," Appl. Opt., Vol. 44, 2332-2337, 2005.
doi:10.1364/AO.44.002332 Google Scholar
6. Webb, K. J. and J. Li, "Analysis of transmission through small apertures in conducting films," Phys. Rev. B, Vol. 73, 033401, 2006.
doi:10.1103/PhysRevB.73.033401 Google Scholar
7. Garcia de Abajo, F., "Light transmission through a single cylindrical hole in a metallic ¯lm," Opt. Express, Vol. 10, 1475-1484, 2002. Google Scholar
8. Popov, E., M. Neviere, A. Sentenac, N. Bonod, A.-L. Fehrembach, J. Wenger, P.-F. Lenne, and H. Rigneault, "Single-scattering theory of light di®raction by a circular subwavelength aperture in a finitely conducting screen," J. Opt. Soc. Am. A, Vol. 24, 339-358, 2007.
doi:10.1364/JOSAA.24.000339 Google Scholar
9. Michalski, K. A., "Complex image method analysis of a plane wave-excited subwavelength circular aperture in a planar screen," Progress In Electromagnetics Research B, Vol. 27, 253-272, 2011. Google Scholar
10. Obermuller, C. and K. Karrai, "Far-field characterization of diffracting apertures," Appl. Phys. Lett., Vol. 67, 3408-3410, 1995.
doi:10.1063/1.115262 Google Scholar
11. Degiron, A., H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal ," Opt. Commun., Vol. 239, 61-66, 2004.
doi:10.1016/j.optcom.2004.05.058 Google Scholar
12. Yin, L., V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface palsmons at single nanoholes in Au films," Appl. Phys. Lett., Vol. 85, 467-469, 2004.
doi:10.1063/1.1773362 Google Scholar
13. Lezec, H. J., A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science, Vol. 297, 820-822, 2002.
doi:10.1126/science.1071895 Google Scholar
14. Akarca-Biyikli, S. S., I. Bulu, and E. Ozbay, "Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture," Appl. Phys. Lett., Vol. 85, 1098-1100, 2004.
doi:10.1063/1.1783013 Google Scholar
15. Aydin, K., A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, "Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture ," Phys. Rev. Lett., Vol. 102, 013904, 2009.
doi:10.1103/PhysRevLett.102.013904 Google Scholar
16. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Techn., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
17. Holloway, C. L., E. F. Kuester, J. Baker-Jarvis, and P. Kabos, "A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix ," IEEE Trans. Antennas Propag., Vol. 51, 2596-2603, 2003.
doi:10.1109/TAP.2003.817563 Google Scholar
18. Schuller, J. A., R. Zia, T. Taubner, and M. L. Brongersma, "Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles ," Phys. Rev. Lett., Vol. 99, 107401, 2007.
doi:10.1103/PhysRevLett.99.107401 Google Scholar
19. Popa, B. and S. A. Cummer, "Compact dielectric particles as a building block for low-loss magnetic metamaterials," Phys. Rev. Lett., Vol. 100, 207401, 2008.
doi:10.1103/PhysRevLett.100.207401 Google Scholar
20. Zhao, Q., L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, "Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite," Phys. Rev. Lett., Vol. 101, 027402, 2008.
doi:10.1103/PhysRevLett.101.027402 Google Scholar
21. Nemec, H., P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, "Tunable terahertz metamaterials with negative permeability," Phys. Rev. B, Vol. 79, 241108(R), 2009. Google Scholar
22. Zhang, F., Q. Zhao, L. Kang, J. Zhou, and D. Lippens, "Experimental vericafition of isotropic and polarization properties of high permittivity-based metamaterial," Phys. Rev. B, Vol. 80, 195119, 2009.
doi:10.1103/PhysRevB.80.195119 Google Scholar
23. Zhao, Q., J. Zhou, F. Zhang, and D. Lippens, "Mie resonance based dielectric metamaterial," Materials Today, Vol. 12, 60, 2009.
doi:10.1016/S1369-7021(09)70318-9 Google Scholar
24. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1999.
25. Balanis, C., Antenna Theory, Analysis, and Design, 2nd Ed., Wiley, New York, 1997.
26. Carbonell, J., E. Lheurette, and D. Lippens, "From rejection to transmission with stacked arrays of split ring resonators," Progress In Electromagnetics Research, Vol. 112, 215-224, 2011. Google Scholar
27. Vendik, O. G., L. T. Ter-Martirosyan, and S. P. Zubko, "Microwave losses in incipient ferroelectrics as functions of the temperature and the biasing field," J. Appl. Phys., Vol. 84, 993-998, 1998.
doi:10.1063/1.368166 Google Scholar
28. Geyer, R. G., B. Riddle, J. Krupka, and L. A. Boatner, "Microwave dielectric properties of single-crystal quantum paraelectrics KTaO3 and SrTiO3 at cryogenic temperatures," J. Appl. Phys., Vol. 97, 104111, 2005.
doi:10.1063/1.1905789 Google Scholar
29. Vendik, O. G. and S. P. Zubko, "Modeling the dielectric response of incipient ferroelectrics," J. Appl. Phys., Vol. 82, 4475-4483, 1997.
doi:10.1063/1.366180 Google Scholar
30. Shaw, T. M., Z. Suo, M. Huang, E. Liniger, R. B. Laibowitz, and J. D. Baniecki, "The effect of stress on the dielectric properties of barium strontium titanate thin films," Appl. Phys. Lett., Vol. 75, 2129-2131, 1999.
doi:10.1063/1.124939 Google Scholar
31. Molla, J., M. Gonzalez, R. Vila, and A. Ibarra, "Effect of humidity on microwave dielectric losses of porous alumina," J. Appl. Phys., Vol. 85, 1727-1730, 1999.
doi:10.1063/1.369317 Google Scholar
32. Zhao, Q., B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, "Tunable negative permeability in an isotropic dielectric composite," Appl. Phys. Lett., Vol. 92, 051106, 2008.
doi:10.1063/1.2841811 Google Scholar