1. Soltani, S., M.-N. Azarmanesh, E. Valikhanloo, and P. Lotfi, "Design of a simple single-feed dual-orthogonal-linearly-polarized slot antenna for concurrent 3.5 GHz WiMAX and 5 GHz WLAN access point," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1741-1750, 2010. Google Scholar
2. Mahatthanajatuphat, C., S. Saleekaw, P. Akkaraekthalin, and M. Krairiksh, "A rhombic patch monopole antenna with modified Minkowski fractal geometry for UMTS, WLAN, and mobile WiMAX application," Progress In Electromagnetics Research, Vol. 89, 57-74, 2009.
doi:10.2528/PIER08111907 Google Scholar
3. Zhao, Q., S.-X. Gong, W. Jiang, B. Yang, and J. Xie, "Compact wide-slot tri-band antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 18, 9-18, 2010.
doi:10.2528/PIERL10081601 Google Scholar
4. Chang, T. N., G. Y. Shen, and J. M. Lin, "CPW-fed antenna covering WiMAX 2.5/3.5/5.7 GHz bands," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2-3, 189-197, 2010.
doi:10.1163/156939310790735589 Google Scholar
5. Weng, M. H., C. H. Kao, and Y. C. Chang, "A compact dual-band bandpass filter with high band selectivity using cross-coupled asymmetric SIRs for WLANs," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2-3, 161-168, 2010.
doi:10.1163/156939310790735679 Google Scholar
6. Lee, C.-H., I.-C. Wang, and C.-I. G. Hsu, "Dual-band balanced BPF using λ/4 stepped-impedance resonators and folded feed lines," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2441-2449, 2009. Google Scholar
7. Weng, M.-H., S.-K. Liu, H.-W. Wu, and C.-H. Hung, "A complementary lens based on broadband metamaterialsdual-band bandpass filter having wide and narrow bands simultaneously using multilayered stepped impedance resonators," Progress In Electromagnetics Research Letters, Vol. 13, 139-147, 2010.
doi:10.2528/PIERL10022401 Google Scholar
8. Hu, X., Q. Zhang, and S. He, "Compact dual-band rejection filter based on complementary meander line split ring resonator," Progress In Electromagnetics Research Letters, Vol. 8, 181-190, 2009.
doi:10.2528/PIERL08110801 Google Scholar
9. Studniberg, M. and G. V. Eleftheriades, "A quad-band bandpass filter using negative-refractive-index transmission-line (NRI-TL) metamaterials," IEEE Antennas and Propagation Society International Symposium, 4961-4964, 2007. Google Scholar
10. Liu, J. C., J. W. Wang, B. H. Zeng, and D. C. Chan, "CPW-fed dual-mode double-square-ring resonators for quad-band filters," IEEE Microw. Wireless Compon. Lett., Vol. 20, 142-144, 2010.
doi:10.1109/LMWC.2010.2040211 Google Scholar
11. Cheng, C. C. and C. F. Yang, "Develop quad-band (1.57/2.45/3.5/5.2 GHz) bandpass filters on the ceramic substrate," IEEE Microw. Wireless Compon. Lett., Vol. 20, 594-596, 2010. Google Scholar
12. Hsu, K. W. and W. H. Tu, "Design of a novel four-band microstrip bandpass filter using double-layered substrate," IEEE Microwave Symposium Digest, 1041-1044, 2009. Google Scholar
13. Chang, Y. C., C. H. Kao, M. H. Weng, and R. Y. Yang, "Design of the compact wideband bandpass filter with low loss, high selectivity and wide stopband," IEEE Microw. Wireless Compon. Lett., Vol. 18, 770-772, 2008.
doi:10.1109/LMWC.2008.2007691 Google Scholar
14. Yang, R.-Y., C.-Y. Hung, J.-S. Lin, and Y.-K. Yang, "A simple method to design a compact triple-passband filter using novel coupling scheme and multi-layered substrate," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 443-453, 2011.
doi:10.1163/156939311794362849 Google Scholar
15. Yang, R.-Y., C.-Y. Hung, and J.-S. Lin, "A dual-band bandpass filter with an enhanced second passband performance using modifiable coupling," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 305-314, 2011.
doi:10.1163/156939311794362803 Google Scholar
16. Pozar, D. M., Microwave Engineering, 2 Ed., Wiley, 1998.
17. IE3D Simulator, Zeland Software, Inc., 2002.