Vol. 114
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-03-01
Tunable Photonic Band Gap in a Doped Semiconductor Photonic Crystal in Near Infrared Region
By
Progress In Electromagnetics Research, Vol. 114, 271-283, 2011
Abstract
In this work, we theoretically investigate the tunable photonic band gap (PBG) in a semiconductor-dielectric photonic crystal made of highly doped n-type silicon (Si) layers alternating with silicon oxide layers. The tunable characteristic is studied by changing the donor impurity concentration in Si layer. The PBG is numerically analyzed in the near infrared frequency region from the reflectance calculated by the transfer matrix method. The effect of filling factor in Si layer on the photonic band gap is also illustrated. These tunable properties in such a photonic crystal provide some information that could be of technical use to the semiconductor optoelectronics, especially in communication applications.
Citation
Chien-Jang Wu Ya-Chang Hsieh Heng-Tung Hsu , "Tunable Photonic Band Gap in a Doped Semiconductor Photonic Crystal in Near Infrared Region," Progress In Electromagnetics Research, Vol. 114, 271-283, 2011.
doi:10.2528/PIER11011808
http://www.jpier.org/PIER/pier.php?paper=11011808
References

1. John, S., "Electromagnetic absorption in a disordered medium near a photon mobility edge," Phys. Rev. Lett., Vol. 53, 2169-2173, 1984.
doi:10.1103/PhysRevLett.53.2169

2. John, S., "Strong localization of photons in certain disordered lattices,".
doi:10.1103/PhysRevLett.53.2169

3. Yablonovitch, E., Inhibited spontaneous emission in solid state physics and electronics, "Inhibited spontaneous emission in solid state physics and electronics,", Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

4. Li, H. and X. Yang, "Larger absolute band gaps in two-dimensional photonic crystals fabricated by a three-order-effect method," Progress In Electromagnetics Research, Vol. 108, 385-400, 2010.
doi:10.2528/PIER10072505

5. Wu, C.-J. and Z.-H. Wang, "Properties of defect modes in one-dimensional photonic crystals," Progress In Electromagnetics Research, Vol. 103, 169-184, 2010.
doi:10.2528/PIER10031706

6. Wu, C.-J., J.-J. Liao, and T.-W. Chang, "Tunable multilayer Fabry-Perot resonator using electro-optical defect layer," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 531-542, 2010.

7. Rahimi, H., A. Namdar, S. Roshan Entezar, and H. Tajalli, "Photonic transmission spectra in one-dimensional fibonacci multilayer structures containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 102, 15-30, 2010.
doi:10.2528/PIER09122303

8. Chen, D., M.-L. Vincent Tse, and H.-Y. Tam, "Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: Birefringence and dispersion," Progress In Electromagnetics Research, Vol. 105, 193-212, 2010.
doi:10.2528/PIER10042706

9. Nozhat, N. and N. Granpayeh, "Specialty fibers designed by photonic crystals," Progress In Electromagnetics Research, Vol. 99, 225-244, 2009.
doi:10.2528/PIER09092309

10. Shi, Y., "A compact polarization beam splitter based on a multimode photonic crystal waveguide with an internal photonic crystal section ," Progress In Electromagnetics Research, Vol. 103, 393-401, 2010.
doi:10.2528/PIER10040402

11. Bermann, O. L., Y. E. Lozovik, S. L. Eiderman, and R. D. Coalson, "Superconducting photonic crystals," Phys. Rev. B, Vol. 74, 092505, 2006.
doi:10.1103/PhysRevB.74.092505

12. Takeda, H. and K. Yoshino, "Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors," Phys. Rev. B, Vol. 67, 245109, 2005.
doi:10.1103/PhysRevB.67.245109

13. Wu, C.-J., M.-S. Chen, and T.-J. Yang, "Photonic band structure for a superconducting-dielectric superlattice," Physica C, Vol. 432, 133-139, 2005.
doi:10.1016/j.physc.2005.07.019

14. Wu, C.-J., "Transmission and reflection in a periodic supercon-ductor/dielectric film multilayer structure," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 15, 1991-1996, 2005.
doi:10.1163/156939305775570468

15. Wu, C.-J., C.-L. Liu, and W.-K. Kuo, "Analysis of thickness-Analysis of thicknessing photonic crystal," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8--9, 1113-1122, 2009.

16. Lin, W.-H., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Terahertz multichanneled filter in a superconducting photonic crystal," Optics Express, Vol. 18, 27155-27166, 2010.
doi:10.1364/OE.18.027155

17. Anlage, S. M., "The physics and applications of superconducting metamaterials ," J. Optics, Vol. 13, 024001, 2011.
doi:10.1088/2040-8978/13/2/024001

18. Lyubchanskii, I. L., N. N. Dadoenkova, A. E. Zabolotin, Y. P. Lee and T. Rasing, "A one-dimensional photonic crystal with a superconducting defect layer," J. Optics A: Pure Appl. Opt., Vol. 11, 114014, 2009.
doi:10.1088/1464-4258/11/11/114014

19. Choudhury, P. K. and W. K. Soon, "TE mode propagation through tapered core liquid crystal optical fibers," Progress In Electromagnetics Research, Vol. 104, 449-463, 2010.
doi:10.2528/PIER10021104

20. McPhail, D., M. Straub, and M. Gu, "Optical tuning of three-dimensional photonic crystals fabricated by femtosecond direct writing," Appl. Phys. Lett., Vol. 87, 091117, 2005.
doi:10.1063/1.2037862

21. Halevi, P., J. A. Reyes-Avendano, and J. A. Reyes-Cervantes, "Electrically tuned phase transition and band structure in a liquid-crystal-in¯lled photonic crystal," Phys. Rev. E, Vol. 73, R040701, 2006.
doi:10.1103/PhysRevE.73.040701

22. Qi, L.-M. and Z. Yang, "Modified plane wave method analysis of dielectric plasma photonic crystal," Progress In Electromagnetics Research, Vol. 91, 319-332, 2009.
doi:10.2528/PIER09022605

23. Tian, H. and J. Zi, "One-dimensional tunable photonic crystals by means of external magnetic fields," Optics Commun., Vol. 252, 321-328, 2005.
doi:10.1016/j.optcom.2005.04.022

24. Sabah, C. and S. Uckun, "Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306

25. Inoue, M., R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, "Magnetophotonic crystals," J. Phys. D: Appl. Phys., Vol. 39, R151-R161, 2006.
doi:10.1088/0022-3727/39/8/R01

26. Lyubchanskii, I. L., N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and T. Rasing, "Magnetic photonic crystals," J. Phys. D:Appl. Phys., Vol. 36, R227-R287, 2003.

27. Fu, X., C. Cui, and S. C. Chan, "Optically injected semiconductor laser for photonic microwave frequency mixing in radio-over-fiber," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 849-960, 2010.
doi:10.1163/156939310791285236

28. Mustafa, F. and A. M. Hashim, "Properties of electromagnetic ¯elds and e®ective permittivity excited by drifting plasma waves in semiconductor-insulator interface structure and equivalent transmission line technique for multi-layered structure," Progress In Electromagnetics Research, Vol. 104, 403-425, 2010.
doi:10.2528/PIER10041504

29. Figotin tunable photonic crystals, F., Y. A. Godin, and I. Vitebsky, "Two-dimensional tunable photonic crystals," Phys. Rev. B, Vol. 57, 2841-2848, 1998.

30. Golosovsky, M., Y. Saado, and D. Davidov, "Self-assembly of °oating magnetic particles into ordered structures: A promising route for the fabrication of tunable photonic band gap materials," Appl. Phys. Lett., Vol. 75, 4168-4170, 1999.
doi:10.1063/1.125571

31. Kee, C.-S., J. E. Kim, H. Y. Park, and H. Lim, "Two-dimensional tunable magnetic photonic crystals," Phys. Rev. B, Vol. 61, 15523-15525, 2000.
doi:10.1103/PhysRevB.61.15523

32. Galindo-Linares, E., P. Halevi, and A. S. Sanchez, "Tuning of one-dimensional Si/SiO2 photonic crystals at the wavelength of 1.54 mm," Solid State Commun., Vol. 142, 67-70, 2007.
doi:10.1016/j.ssc.2007.01.018

33. Yeh, P., Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1991.

34. Kumar, V., K. S. Singh, and S. P. Ojha, "Enhanced omni-directional re°ection frequency range in Si-based one dimensional photonic crystal with defect," Optik, 2010.