1. Zhou, H., T. Takenaka, J. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001 Google Scholar
2. Caramanica, F. and G. Oliveri, "An innovative multi-source strategy for enhancing the reconstruction capabilities of inverse scattering techniques ," Progress In Electromagnetics Research, Vol. 101, 349-374, 2010.
doi:10.2528/PIER09120803 Google Scholar
3. Solimene, R., A. Brancaccio, R. Di Napoli, and R. Pierri, "3D sliced tomographic inverse scattering experimental results," Progress In Electromagnetics Research, Vol. 105, 1-13, 2010.
doi:10.2528/PIER10050705 Google Scholar
4. Ramm, A. G., "Inverse Problems: Mathematical and Analytical Techniques with Applications to Engineering," Springer, 2004. Google Scholar
5. Pastorino, M., "Recent inversion procedures for microwave imaging in biomedical, subsurface detection and nondestructive evaluation applications ," Imaging Measurement Systems, Vol. 36, No. 3-4, 257-269, Oct.-Dec. 2004. Google Scholar
6. El-Shenawee, M. and E. Miller, "Spherical harmonics microwave algorithm for shape and location reconstruction of breast cancer tumor ," IEEE Transactions on Medical Imaging, Vol. 25, No. 10, 1258-1271, Oct. 2006.
doi:10.1109/TMI.2006.881377 Google Scholar
7. Huang, H., X. Qu, J. Liang, X. He, X. Chen, D. Yang, and J. Tian, "A multi-phase level set framework for source reconstruction in bioluminescence tomography ," Journal of Computational Physics, Vol. 229, No. 13, 5246-5256, Jul. 2010.
doi:10.1016/j.jcp.2010.03.041 Google Scholar
8. Hohage, T., "Fast numerical solution of the electromagnetic medium scattering problem and applications to the inverse problem," Journal of Computational Physics, Vol. 214, No. 1, 224-238, May 2006.
doi:10.1016/j.jcp.2005.09.025 Google Scholar
9. Hea, L., S. Kindermannb, and M. Sin, "Reconstruction of shapes and impedance functions using few far-field measurements," Journal of Computational Physics, Vol. 228, No. 3, 717-730, Feb. 2009.
doi:10.1016/j.jcp.2008.09.029 Google Scholar
10. Baoa, G., S. Houb, and P. Li, "Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm," Journal of Computational Physics, Vol. 227, No. 1, 755-762, Nov. 2007.
doi:10.1016/j.jcp.2007.08.020 Google Scholar
11. Travassos, X. L., D. A. G. Vieira, N. Ida, C. Vollaire, and A. Nicolas, "Inverse algorithms for the GPR assessment of concrete structures," IEEE Transactions on Magnetics, Vol. 44, No. 6, 994-997, Jun. 2008.
doi:10.1109/TMAG.2007.916661 Google Scholar
12. Soldovieri, F., A. Brancaccio, G. Prisco, G. Leone, and R. Pierri, "A Kirchhoff-based shape reconstruction algorithm for the multimonostatic configuration: The realistic case of buried pipes," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 10, 3031-3038, Oct. 2008.
doi:10.1109/TGRS.2008.921959 Google Scholar
13. Brignone, M., G. Bozza, A. Randazzo, M. Piana, and M. Pastorino, "A hybrid approach to 3D microwave imaging by using linear sampling and ACO ," IEEE Trans. on Antennas and Propagation, Vol. 56, No. 10, 3224-3232, Oct. 2008.
doi:10.1109/TAP.2008.929504 Google Scholar
14. Catapano, I., L. Crocco, M. D'Urso, and T. Isernia, "3D microwave imaging via preliminary support reconstruction: Testing on the Fresnel 2008 database," Inverse Problems, Vol. 25, No. 2, Feb. 2009.
doi:10.1088/0266-5611/25/2/024002 Google Scholar
15. Tortel, H., "Electromagnetic imaging of a three-dimensional perfectly conducting object using a boundary integral formulation," Inverse Problems, Vol. 20, 385-398, 2004.
doi:10.1088/0266-5611/20/2/005 Google Scholar
16. Catapano, I., L. Crocco, and T. Isernia, "Improved sampling methods for shape reconstruction of 3-D buried targets," IEEE Trans. on Geoscience and Remote Sensing, Vol. 46, No. 10, 3265-3273, Oct. 2008.
doi:10.1109/TGRS.2008.921745 Google Scholar
17. Yu, C., M. Yuan, and Q. H. Liu, "Reconstruction of 3D objects from multi-frequency experimental data with a fast DBIM-BCGS method," Inverse Problems, Vol. 25, No. 2, Feb. 2009.
doi:10.1088/0266-5611/25/2/024007 Google Scholar
18. Vouldis, A. T., C. N. Kechribaris, T. A. Maniatis, K. S. Nikita, and N. K. Uzunoglu, "Investigating the enhancement of three-dimensional di®raction tomography by using multiple illumination planes," Journal of Optical Society of America, Vol. 22, No. 7, 1251-1262, Jul. 2005. Google Scholar
19. Zaeytijd, J. D., A. Franchois, C. Eyraud, and J. M. Geffrin, "Full-wave three-dimensional microwave imaging with a regularized Gauss-Newton method --- Theory and experiment," IEEE Trans. on Antennas and Propagation, Vol. 55, No. 11, 3279-3292, Nov. 2007.
doi:10.1109/TAP.2007.908824 Google Scholar
20. Saeedfar, A. and K. Barkeshli, "Shape reconstruction of three-dimensional conducting curved plates using physical optics, nurbs modeling, and genetic algorithm," IEEE Trans. on Antennas and Propagation, Vol. 54, No. 9, 2497-2507, Sep. 2006.
doi:10.1109/TAP.2006.880662 Google Scholar
21. Solimene, R., A. Buonanno, R. Pierri, and F. Soldovieri, "Shape reconstruction of 3D metallic objects via a physical optics distributional approach," AEU International Journal of Electronics and Communications, Vol. 64, No. 2, 142-151, Feb. 2010.
doi:10.1016/j.aeue.2008.11.011 Google Scholar
22. Banasiak, R. and M. Soleimani, "Shape based reconstruction of experimental data in 3D electrical capacitance tomography," NDT & E International, Vol. 43, No. 3, 241-249, Apr. 2010.
doi:10.1016/j.ndteint.2009.12.001 Google Scholar
23. Çayören, M., I. Akduman, A. Yapa, and L. Crocco, "A new algorithm for the shape reconstruction of perfectly conducting objects,", Vol. 23, No. 3, 1100, Apr. 2007. Google Scholar
24. El-Shenawee, M., O. Dorn, and M. Moscoso, "An adjoint-field technique for shape reconstruction of 3-D penetrable object immersed in lossy medium," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 2, 520-534, Feb. 2009.
doi:10.1109/TAP.2008.2011195 Google Scholar
25. Ferrayé, R., J. Dauvignac, and C. Pichot, "An inverse scattering method based on contour deformations by means of a level set method using frequency hopping technique," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 5, May 2003. Google Scholar
26. Litman, A., "Reconstruction by level sets of n-ary scattering obstacles," Inverse Problems, Vol. 21, No. 6, 131-152, Dec. 2005.
doi:10.1088/0266-5611/21/6/S10 Google Scholar
27. Van den Doel, K. and U. M. Ascher, "On level set regularization for highly ill-posed distributed parameter estimation problems," J. Computational Physics, Vol. 216, No. 2, 707-723, Aug. 2006.
doi:10.1016/j.jcp.2006.01.022 Google Scholar
28. Hajihashemi, M. R. and M. El-Shenawee, "TE versus TM for the shape reconstruction of 2-D PEC targets using the level-set algorithm," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 3, 1159-1168, Mar. 2010.
doi:10.1109/TGRS.2009.2029698 Google Scholar
29. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transaction on Antennas and Propagation, Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
30. Makarov, S. N., Antenna and EM Modeling with Matlab, 1st Ed., Wiley Press, 2002.
31. FEKO User's Manual, Suite 5.3, Jul. 2007, , .
32. Gibson, W. C., The Method of Moments in Electromagnetics, Chapman & Hall/CRC Press, 2007.
33. Sethian, J. A., Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999.
34. Osher, S. J. and R. P. Fedkiw, "Level Set Methods and Dynamic Implicit Surfaces," Springer-Verlag, 2003. Google Scholar
35. Roger, A., "Reciprocity theorem applied to the computation of functional derivatives of the scattering matrix ," Electro-Magnetics, Vol. 2, No. 1, 69-83, 1982. Google Scholar
36. Lorensen, W. E. and H. E. Cline, "Marching cubes: A high resolution 3D surface construction algorithm," Computer Graphics, Vol. 21, No. 4, Jul. 1987. Google Scholar
37. Nielson, G. M. and A. Huang, "Approximating normals for marching cubes applied to locally supported isosurfaces," IEEE Visualization Proceedings, 459-466, Oct. 2002. Google Scholar
38. Hansen, G. A., R. W. Douglass, and A. Zardecki, "Mesh Enhancement," Imperial College Press, 404, 2005. Google Scholar
39. Chew, W. C. and J. H. Lin, "A frequency-hopping approach for microwave imaging of large inhomogenous bodies," IEEE Microwave and Wave Guided Letters, Vol. 5, No. 12, 439, Dec. 1995.
doi:10.1109/75.481854 Google Scholar
40. Hajihashemi, M. R. and M. El-Shenawee, "High performance computing for the level-set reconstruction algorithm," J. of Parallel and Distributed Computing, Vol. 70, No. 6, 671-679, Jun. 2010.
doi:10.1016/j.jpdc.2009.10.001 Google Scholar
41. Hajihashemi, M. R., Inverse scattering level set algorithm for retrieving the shape and location of multiple targets, Ph.D. Dissertation, University of Arkansas, 2010.
42. Hassan, A., M. Hajihashemi, M. El-Shenawee, A. Al-Zoubi, and A. Kishk, "Drift De-noising of experimental TE measurements for imaging of 2D PEC cylinder using the level set algorithm," IEEE Antennas and Wireless Propag. Letters, Vol. 8, 1218-1222, 2009.
doi:10.1109/LAWP.2009.2035341 Google Scholar
43. Woten, D. A., M. R. Hajihashemi, A. M. Hassan, and M. El-Shenawee, "Experimental microwave validation of the level-set reconstruction algorithm," IEEE Transaction on Antennas and Propagation, Vol. 58, No. 1, 230-233, Jan. 2010.
doi:10.1109/TAP.2009.2036186 Google Scholar