1. Liu, S. C., Z. W. Yin, L. Zhang, X. F. Chen, L. Gao, and J. C. Cheng, "Dual-wavelength fbg laser sensor based on photonic generation of radio frequency demodulation technique," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2177-2185, 2009.
doi:10.1163/156939309790109252 Google Scholar
2. Fu, X., C. Cui, and S. C. Chan, "Optically injected semiconductor laser for photonic microwave frequency mixing in radio-over-fiber," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 849-860, 2010.
doi:10.1163/156939310791285236 Google Scholar
3. Yang, B., X. F. Jin, X. M. Zhang, H. Chi, and S. L. Zheng, "Photonic generation of 60 GHz millimeter-wave by frequency quadrupling based on a mode-locking soa fiber ring laser with a low modulation depth MZM," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1773-1782, 2010. Google Scholar
4. Bergamaschi, P., M. Schupp, and G. W. Harris, "High-precision direct measurements of 13CH4/12CH4 and 12CH3D/12CH4 ratios in atmospheric methane sources by means of a long-path tunable diode laser absorption spectrometer," Appl. Optics, Vol. 33, 7704-7716, 1994.
doi:10.1364/AO.33.007704 Google Scholar
5. Roller, C., K. Namjou, J. D. Jeffers, M. Camp, A. Mock, P. J. McCann, and J. Grego, "Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: Application in monitoring respiratory inflammation," Appl. Optics, Vol. 41, 6018-6029, 2002.
doi:10.1364/AO.41.006018 Google Scholar
6. Guan, Z., M. Lewander, and S. Svanberg, "Quasi zero-background tunable diode laser absorption spectroscopy employing a balanced Michelson interferometer," Opt. Express, Vol. 16, 21714-21720, 2008.
doi:10.1364/OE.16.021714 Google Scholar
7. Galais, A., G. Fortunato, and P. Chavel, "Gas concentration measurement by spectral correlation: Rejection of interferent species ," Appl. Optics, Vol. 24, 2127-2134, 1985.
doi:10.1364/AO.24.002127 Google Scholar
8. Sandsten, J., H. Edner, and S. Svanberg, "Gas imaging by infrared gas-correlation spectrometry," Opt. Lett., Vol. 21, 1945-1947, 1996.
doi:10.1364/OL.21.001945 Google Scholar
9. Reid, J., J. Shewchun, B. K. Garside, and E. A. Ballik, "High sensitivity pollution detection employing tunable diode lasers," Appl. Optics, Vol. 17, 300-307, 1978.
doi:10.1364/AO.17.000300 Google Scholar
10. Somesfalean, G., M. SjÄoholm, L. Persson, H. Gao, T. Svensson, and S. Svanberg, "Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers ," Appl. Phys. Lett., Vol. 86, 184102, 2005.
doi:10.1063/1.1921351 Google Scholar
11. Lou, X. T., G. Somesfalean, F. Xu, Y. G. Zhang, and Z. G. Zhang, "Gas sensing by tunable multimode diode laser using correlation spectroscopy," Appl. Phys. B, Vol. 93, 671-676, 2008.
doi:10.1007/s00340-008-3167-3 Google Scholar
12. Lou, X. T., G. Somesfalean, B. Chen, and Z. G. Zhang, "Oxygen measurement by multimode diode lasers employing gas correlation spectroscopy," Appl. Optics, Vol. 48, 990-997, 2009.
doi:10.1364/AO.48.000990 Google Scholar
13. Zhang, Z. G., X. T. Lou, G. Somesfalean, B. Chen, Y. G. Zhang, H. Wang, S. Wu, and Y. Qin, "Simultaneous detection of multiple gas species by correlation spectroscopy using a multi-mode diode laser," Opt. Lett., Vol. 35, 1749-1751, 2010.
doi:10.1364/OL.35.002143 Google Scholar
14. Macho, S., R. Boque, M. S. Larrechi, and F. X. Rius, "Multivariate determination of several compositional parameters related to the content of hydrocarbon in naphtha by MIR spectroscopy," Analyst, Vol. 124, 1827-1831, 1999.
doi:10.1039/a905693i Google Scholar
15. Forina, M., S. Lanteri, M. C. Cerrato Oliveros, and C. Pizarro Millan, "Selection of useful predictors in multivariate calibration," Anal. Bioanal. Chem., Vol. 380, 397-418, 2004.
doi:10.1007/s00216-004-2768-x Google Scholar
16. Barton, F. E., J. D. Bargeron, G. R. Gamble, D. L. Mcalister, and E. Hequet, "Analysis of Sticky Cotton by Near-Infrared Spectroscopy," Appl. Spectrosc., Vol. 59, 1388-1392, 2005.
doi:10.1366/000370205774783214 Google Scholar
17. Liau, J.-J., N.-H. Sun, S.-C. Lin, R.-Y. Ro, J.-S. Chiang, C.-L. Pan, and H.-W. Chang, "A new look at numerical analysis of uniform fiber bragg gratings using coupled mode theory," Progress In Electromagnetics Research, Vol. 93, 385-401, 2009.
doi:10.2528/PIER09031102 Google Scholar
18. Chen, B., S. L. Zheng, X. M. Zhang, X. F. Jin, and H. Chi, "Simultaneously realizing PM-IM conversion and e±ciency improvement of fiber-optic links using FBG," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 161-170, 2009.
doi:10.1163/156939309787604472 Google Scholar
19. Sandsten, J., P. Wiebring, H. Edner, and S. Svanberg, "Realtime radiation gas-correlation imaging employing thermal," Opt. Express, Vol. 6, 92-103, 2000.
doi:10.1364/OE.6.000092 Google Scholar
20. Dakin, J. P., M. J. Gunning, P. Chambers, and Z. J. Xin, "Detection of gases by correlation spectroscopy," Sens. Actuators. B, Vol. 90, 124-131, 2003.
doi:10.1016/S0925-4005(03)00043-1 Google Scholar
21. Ahmad, H., A. H. Sulaiman, S. Shahi, and S. W. Harun, "SOA-based multi-wavelength laser using fiber Bragg gratings," Laser Phys., Vol. 19, 1002-1005, 2009.
doi:10.1134/S1054660X09050193 Google Scholar
22. , , , http://www.camo.com/resources/principal-component-analysis.html.
doi:10.2528/PIER09073004
23. , , , http://www.camo.com/resources/simca.html.
24. , , , http://www.cfa.harvard.edu/HITRAN/.
25. Chan, Y. K., M. Y. Chua, and V. C. Koo, "Sidelobes reduction using simple two and tri-stages non linear frequency modulation (NLFM) ," Progress In Electromagnetics Research, Vol. 98, 33-52, 2009. Google Scholar