1. Razalli, M. S., A. Ismail, M. A. Mahdi, and M. N. Hamidon, "Novel compact `via-less' ultra-wide band filter utilizing capacitive microstrip patch," Progress In Electromagnetics Research, Vol. 91, 213-227, 2009.
doi:10.2528/PIER09020403 Google Scholar
2. Mo, S. G., Z. Y. Yu, and L. Zhang, "Design of triple-mode bandpass filter using improved hexagonal loop resonator," Progress In Electromagnetics Research, Vol. 96, 117-125, 2009.
doi:10.2528/PIER09080304 Google Scholar
3. Ye, C. S., Y. K. Su, M. H. Weng, C. Y. Hung, and R. Y. Yang, "Design of the compact parallel-coupled lines wideband bandpass filters using image parameter method," Progress In Electromagnetics Research, Vol. 100, 153-173, 2010.
doi:10.2528/PIER09073002 Google Scholar
4. Zhang, L., Z.-Y. Yu, and S.-G. Mo, "Novel planar multimode bandpass filters with radial-line stubs," Progress In Electromagnetics Research, Vol. 101, 33-42, 2010.
doi:10.2528/PIER09121303 Google Scholar
5. Huang, J.-Q. and Q.-X. Chu, "Compact UWB band-pass filter utilizing modified composite right/left-handed structure with cross coupling," Progress In Electromagnetics Research, Vol. 107, 179-186, 2010.
doi:10.2528/PIER10070403 Google Scholar
6. Chiou, Y.-C., P.-S. Yang, J.-T. Kuo, and C.-Y.Wu, "Transmission zero design graph for dual-mode dual-band filter with periodic stepped-impedance ring resonator," Progress In Electromagnetics Research, Vol. 108, 23-36, 2010.
doi:10.2528/PIER10071608 Google Scholar
7. Lopez-Garcia, B., D. V. B. Murthy, and A. Corona-Chavez, "Half mode microwave filters based on epsilon near zero and mu near zero concepts," Progress In Electromagnetics Research, Vol. 113, 379-393, 2011. Google Scholar
8. Vegesna, S. and M. Saed, "Novel compact dual-band bandpass microstrip filter," Progress In Electromagnetics Research B, Vol. 20, 245-262, 2010.
doi:10.2528/PIERB10012210 Google Scholar
9. Dishal, M., "Alignment and adjustment of synchronously tuned multiple-resonant-circuit filters," Proc. IRE, Vol. 39, No. 11, 1448-1455, Nov. 1951.
doi:10.1109/JRPROC.1951.273611 Google Scholar
10. Atia, A. E. and A. E. Williams, "Measurements of intercavity couplings," IEEE Transactions Microwave Theory and Techniques, Vol. 23, No. 6, 519-522, Jun. 1975.
doi:10.1109/TMTT.1975.1128614 Google Scholar
11. Chen, M. H., "Short-circuit tuning method for singly terminated filters," IEEE Transactions Microwave Theory and Techniques, Vol. 25, No. 12, 1032-1036, Dec. 1977.
doi:10.1109/TMTT.1977.1129269 Google Scholar
12. Ness, J. B., "A unified approach to the design, measurement, and tuning of coupled-resonator filters," IEEE Transactions Microwave Theory and Techniques, Vol. 46, 343-351, 1998.
doi:10.1109/22.664135 Google Scholar
13. Zahirovic, N. and R. R. Mansour, "Sequential tuning of coupled resonator filters using Hilbert transform derived relative group delay," 2008 IEEE MTT-S International Microwave Symposium Digest, 739-742, Jun. 15--20, 2008. Google Scholar
14. Miraftab, V. and R. R. Mansour, "Tuning of microwave filters by extracting human experience using fuzzy logic," 2005 IEEE MTT-S International Microwave Symposium Digest, 4, Jun. 12--17, 2005. Google Scholar
15. Miraftab, V. and R. R. Mansour, "Fully automated RF/microwave filter tuning by extracting human experience using fuzzy controllers," IEEE Trans. on Circuits and Systems, Vol. 55, No. 5, Jun. 2008. Google Scholar
16. Dunsmore, J., "Tuning band pass filters in the time domain," IEEE MTT-S Int. Microwave Symp. Digest, 1351-1354, 1999. Google Scholar
17. Lindner, A., H. Kugler, and E. Biebl, "Manual filter tuning by cloning frequency domain data," 37th European Microwave Conference 2007, 329-331, Sep. 2007. Google Scholar
18. Kabir, H., Y. Wang, M. Yu, and Q.-J. Zhang, "Neural network inverse modeling and applications to microwave filter design," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 4, 867-879, Apr. 2008.
doi:10.1109/TMTT.2008.919078 Google Scholar
19. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave filter for Communication Systems: Fundamentals, Design, and Application, John Wiley & Sons, Inc., 2007.
20. Cameron, R. J., "General coupling matrix synthesis methods for Chebyshev filtering functions," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 4, 433-442, Apr. 1999.
doi:10.1109/22.754877 Google Scholar
21. Pepe, G., F.-J. Gortz, and H. Chaloupka, "Sequential tuning of microwave filters using adaptive models and parameter extraction," IEEE Transactions Microwave Theory and Techniques, Vol. 53, No. 1, 22-31, Jan. 2005.
doi:10.1109/TMTT.2004.839342 Google Scholar
22. Thal, H. L., "Computer-aided filter alignment and diagnosis," IEEE Transactions on Microwave Theory and Techniques, Vol. 26, No. 12, 958-963, Dec. 1978.
doi:10.1109/TMTT.1978.1129528 Google Scholar
23. Meng, M. and K.-L. Wu, "An analytical approach to computer-aided diagnosis and tuning of lossy microwave coupled resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 12, 3188-3195, Dec. 2009.
doi:10.1109/TMTT.2009.2033868 Google Scholar
24. Zahirovic, N., R. R. Mansour, and M. Yu, "Scalar measurement-based algorithm for automated filter tuning of integrated Chebyshev tunable filters," IEEE Transactions Microwave Theory and Techniques, Vol. 58, No. 12, 3749-3759, Dec. 2010. Google Scholar
25. Michalski, J., "Artificial neural networks approach in microwave filter tuning," Progress In Electromagnetics Research M, Vol. 13, 173-188, 2010.
doi:10.2528/PIERM10053105 Google Scholar
26. Michalski, J., "Artificial neural network algorithm for automated filter tuning with improved efficiency by usage of many golden filters," Proceedings of XVIII International Conference on Microwave, Radar and Wireless Communications MIKON-2010, Vol. 3, 264-266, Lithuania, Vilnius, Jun. 14--16, 2010.
27. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River, 1999.