1. Lim, H. B., N. T. Nhung, E. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 6, 1697-1704. Google Scholar
2. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast tumor detection: Localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759 Google Scholar
3. O'Halloran, M., M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetic Research, Vol. 103, 153-168, 2010.
doi:10.2528/PIER10030902 Google Scholar
4. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetic Research, Vol. 103, 153-168, 2010. Google Scholar
5. O'Halloran, M., M. Glavin, and E. Jones, "Rotating antenna microwave imaging system for breast cancer detection," Progress In Electromagnetic Research, Vol. 107, 203-217, 2010.
doi:10.2528/PIER10071002 Google Scholar
6. Alshehri, S. A. and S. Khatun, "UWB imaging for breast cancer detection using neural networks," Progress In Electromagnetic Research C, Vol. 7, 79-93, 2009.
doi:10.2528/PIERC09031202 Google Scholar
7. Byrne, D., M. O'Halloran, E. Jones, and M. Glavin, "Transmitter-grouping robust capon beamforming for breast cancer detection," Progress In Electromagnetic Research, Vol. 108, 401-416, 2010.
doi:10.2528/PIER10090205 Google Scholar
8. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701 Google Scholar
9. Bindu, G., A. Lonappan, V. Thomas, C. K. Ananadan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetic Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802 Google Scholar
10. Li, X., S. K. Davis, S. C. Hagness, D. W. Weide, and B. D. Veen, "Microwave imaging via space-time beam forming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Trans. Microwave Theory Techniques, Vol. 52, No. 8, 1856-1865, 2004.
doi:10.1109/TMTT.2004.832686 Google Scholar
11. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array --- Experimental results," IEEE Transactions on Antennas and Propagation, Vol. 57, 1692-1704, 2009.
doi:10.1109/TAP.2009.2019856 Google Scholar
12. Lazaro, A., D. Girbau, and R. Villarino, "Simulated and experimental investigation of microwave imaging using UWB," Progress In Electromagnetics Research, Vol. 94, 263-280, 2009.
doi:10.2528/PIER09061004 Google Scholar
13. Lai, J. C., C. B. Soh, E. Gunawan, and K. S. Low, "Homogeneous and heterogeneous breast phantom for ultra-wideband microwave imaging applications," Progress In Electromagnetic Research, Vol. 100, 377-415, 2010. Google Scholar
14. Lazaro, A., D. Girbau, and R. Villarino, "Wavelet-based breast tumor localization technique using a UWB radar," Progress In Electromagnetic Research, Vol. 98, 75-95, 2009.
doi:10.2528/PIER09100705 Google Scholar
15. Alshehri, S. A., S. Khatun, A. Jantan, R. S. A. Raja Abdullah, R. Mahmod, and Z. Awang, "Experimental breast tumor detection using NN-based UWB imaging," Progress In Electromagnetic Research, Vol. 111, 447-465, 2011.
doi:10.2528/PIER10110102 Google Scholar
16. Sha, L., E. R. Ward, and B. Story, "A review of dielectric properties of normal and malignant breast tissue," Proceedings IEEE SoutheastCon, 457-462, Apr. 5-7, 2002. Google Scholar
17. Lazebnik, M., et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, IOP Publishing, Oct. 2007. Google Scholar
18. Rangayyan, R. M., N. M. El-Faramawy, J. E. Leo Desautels, and O. A. Alim, "Measures of acutance and shape for classification of breast tumor ," IEEE Transactions on Medical Imaging,, Vol. 16, No. 6, Dec. 1997.
doi:10.1109/42.650876 Google Scholar
19. Conceicao, R. C., M. O'Halloran, E. Jones, and M. Glavin, "Investigation of classifiers for early-stage breast cancer based on radar target signatures ," Progress In Electromagnetic Research, Vol. 105, 295-311, 2010.
doi:10.2528/PIER10051904 Google Scholar
20. Davis, S. K., B. D. van Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, Jan. 2008.
doi:10.1109/TBME.2007.900564 Google Scholar
21. Insana, M. F., C. Pellot-Barakat, M. Sridhar, and K. K. Lindfors, "Viscoelastic imaging of breast tumor microenvironment with ultrasound," Journal of Mammary Gland Biology and Neoplasia, Vol. 9, No. 4, Oct. 2004. Google Scholar
22. Bindu, G. and K. T. Mathew, "Characterization of benign and malignant breast tissues using 2-D microwave tomographic imaging," Microwave and Optical Technology Letters, Vol. 49, No. 10, Oct. 2007. Google Scholar
23. O'Halloran, M., B. McGinley, R. C. Conceicao, F. Morgan, E. Jones, and M. Glavin, "Spiking neural networks for breast cancer classi¯cation in a dielectrically heterogeneous breast," Progress In Electromagnetics Research, Vol. 113, 413-428, 2011. Google Scholar
24. Hagness, S. C., A. Taflove, and J. E. Bridges, "Three dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection design of an antenna-array element," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 5, May 1999.
doi:10.1109/8.774131 Google Scholar
25. CST Microwave Studio, CST Inc., 2009.
26. Time Domain Corporation, Cummings Research Park, 330 Wynn Drive, Suite 300, Huntsville, AL 35805, USA . Google Scholar
27. Dielectric Constants of Common Materials http: //www.flowme-terdirectory.com/dielectric constant 01.html. Google Scholar