1. IEEE Std. C95.1-2005 IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz , IEEE, New York, 2005.
2. CNIRP "International commission on non-ionizing radiation protection guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, No. 4, 494-522, Apr. 1998. Google Scholar
3. FCC OET Bulletin 65, Supplement C, , Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields, Jun. 2001.
4. BS EN 62209-1: 2006 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices --- Human models, instrumentation, and procedures --- Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3 GHz),", Sep. 2006. Google Scholar
5. IEEE Std. 1528-2003, , IEEE recommended practice for determining the peak spatial-average specific absorption rate (SAR) in the human head from wireless communications devices: Measurement techniques, Dec. 2003.
6. Kivekas, O., J. Ollikainen, T. Lehtiniemi, and P. Vainikainen, "Bandwidth, SAR, and e±ciency of internal mobile phone antennas," IEEE Trans. on Electromagnetic Compatibility, Vol. 46, No. 1, 71-86, Feb. 2004.
doi:10.1109/TEMC.2004.823613 Google Scholar
7. Kusuma, A. H., A.-F. Sheta, I. Elshafiey, Z. Siddiqui, M. A. S. Alkanhal, S. Aldosari, S. A. Alshebeili, and S. F. Mahmoud, "A new low SAR antenna structure for wireless handset applications," Progress In Electromagnetics Research, Vol. 112, 23-40, 2011. Google Scholar
8. Jensen, M. A. and Y. Rahmat-Samii, "EM interaction of handset antennas and a human in personal communications," IEEE Proceedings, Vol. 83, No. 1, 7-17, Jan. 1995.
doi:10.1109/5.362755 Google Scholar
9. Sager, M., M. Forcucci, and T. Kristensen, "A novel technique to increase the realized efficiency of a mobile phone antenna placed beside a head-phantom," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 1013-1016, Columbus, Ohio, USA, Jun. 2003. Google Scholar
10. Kwak, S. I., D.-U. Sim, J. H. Kwon, and H. D. Choi, "Comparison of the SAR in the human head using the EBG structures applied to a mobile handset," European Microwave Conference, 937-940, Munich, European, Oct. 2007.
11. Chou, H.-H., H.-T. Hsu, H.-T. Chou, K.-H. Liu, and F.-Y. Kuo, "Reduction of peak SAR in human head for handset applications with resistive sheets (r-cards)," Progress In Electromagnetics Research, Vol. 94, 281-296, 2009.
doi:10.2528/PIER09062702 Google Scholar
12. Islam, M. T., M. R. I. Faruque, and N. Misran, "Design analysis of ferrite sheet attachment for SAR reduction in human head," Progress In Electromagnetics Research, Vol. 98, 191-205, 2009.
doi:10.2528/PIER09082902 Google Scholar
13. Sievenpiper, D. F., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. on Microwave Theory and Technique, Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001 Google Scholar
14. Sievenpiper, D. F., High-Impedance Electromagnetic Surfaces, Ph.D. Dissertation, University of California, Los Angeles, USA, 1999.
15. Kollatou, T. and C. Christopoulos, "Use of high-impedance surfaces in electromagnetic compatibility applications," IEEE Trans. on Magnetics, Vol. 45, No. 3, 1812-1815, Mar. 2009.
doi:10.1109/TMAG.2009.2012764 Google Scholar
16. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, Hoboken, NJ, 2000.
17. Guo, C., H.-J. Sun, and X. Lv, "A novel dualband frequency selective surface with periodic cell perturbation," Progress In Electromagnetics Research B, Vol. 9, 137-149, 2008.
doi:10.2528/PIERB08071302 Google Scholar
18. Costa, F., S. Genovesi, and A. Monorchio, "On the bandwidth of high-impedance frequency selective surfaces," IEEE Antennas Wireless and Propagation Letters, Vol. 8, 1341-1344, 2009.
doi:10.1109/LAWP.2009.2038346 Google Scholar
19. Lee, Y. L. R., A. Chauraya, D. S. Lockyer, and J. C. Vardaxoglou, "Dipole and tripole metallodielectric photonic bandgap (MPBG) structures for microwave filter and antenna applications," IEE Proc. Optoelectronics, Vol. 147, No. 6, 395-400, Dec. 2000.
20. Poilasne, G., "Antennas on high impedance ground planes: On the importance of the antenna isolation," Progress In Electromagnetics Research, Vol. 41, 237-255, 2003. Google Scholar
21. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas ," IEEE Trans. on Antennas and Propagations, Vol. 53, No. 1, 209-215, Jan. 2005.
doi:10.1109/TAP.2004.840528 Google Scholar
22. Jing, L. and H-Y. D. Yang, "Radiation characteristics of a microstrip patch over an electromagnetic bandgap surface," IEEE Trans. on Antennas and Propagations, Vol. 55, No. 6, 1691-1697, Jun. 2007.
doi:10.1109/TAP.2007.898633 Google Scholar
23. Zheng, Q.-R., Y.-M. Yan, X.-Y. Cao, and N.-C. Yuan, "High impedance ground plane (HIGP) incorporated with resistance for radar cross section (RCS) reduction of antenna," Progress In Electromagnetics Research, Vol. 84, 307-319, 2008.
doi:10.2528/PIER08072003 Google Scholar
24. Tomeo-Reyes, I. and E. Rajo-Iglesias, "Comparative study on different his as ground planes and its application to low profile wire antennas design," Progress In Electromagnetics Research, Vol. 115, 55-77, 2011. Google Scholar
25. Xie, H.-H., Y.-C. Jiao, L.-N. Chen, and F.-S. Zhang, "An effective analysis method for EBG reducing patch antenna coupling," Progress In Electromagnetics Research Letters, Vol. 21, 187-193, 2011. Google Scholar
26. Chang, C.-S., M.-P. Houng, D.-B. Lin, K.-C. Hung, and I.-T. Tang, "Simultaneous switching noise mitigation capability with low parasitic effect using aperiodic high-impedance surface structure," Progress In Electromagnetics Research Letters, Vol. 4, 149-158, 2008.
doi:10.2528/PIERL08082902 Google Scholar
27. Chang, C.-S., J.-Y. Li, W.-J. Lin, M.-P. Houng, L.-S. Chen, and D.-B. Lin, "Controlling the frequency of simultaneous switching noise suppression by using embedded dielectric resonators in high-impedance surface structure," Progress In Electromagnetics Research Letters, Vol. 11, 149-158, 2009.
doi:10.2528/PIERL09082406 Google Scholar
28. Lin, M. S., C. H. Huang, and C-I. G. Hsu, "Techniques of evaluating high impedance surfaces used for SAR reduction," Asia-Paci¯c Symposium on Electromagnetic Compatibility, 210-213, Beijing, China, Apr. 2010. Google Scholar
29. Remski, R. T., "Analysis of photonic bandgap surfaces using ansoft HFSS," Microwave Journal, Vol. 53, 190-198, Sep. 2000. Google Scholar
30. Chen, Z. N., Antennas for Portable Devices, Wiley, New York, 2007.
31. CTIA Certification Program Management Document "Test plan for mobile station over the air performance, method of measurement for radiated RF power and receiver performance," Revision 3.0, Dec. 2009. Google Scholar
32. FCC CFR 47, Part 15 "Radio frequency devices,", Feb. 2006. Google Scholar
33. Aprel ALSAS 10 Universal system. Available at www.aprel.com.
34. Bouhorma, M., F. Elouaai, and A. Mamouni, "Computation of SAR for two antennas used in mobile communication systems: monopole and patch," New Technologies, Mobility and Security, NTMS'08, 1-4, Nov. 2008. Google Scholar