1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
3. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
4. Caloz, C. and T. Itoh, "Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip ``LH line"," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 412-415, 2002. Google Scholar
5. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE. Trans. Microwave Theory and Tech., Vol. 50, No. 12, 2702-2712, 2002.
doi:10.1109/TMTT.2002.805197 Google Scholar
6. Cubukcu, E., K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Electromagnetic waves: Negative refraction by photonic crystals," Nature, Vol. 423, 604-605, 2003.
doi:10.1038/423604b Google Scholar
7. Parimi, P. V., W. T. Lu, P. Vodo, and S. Srinivas, "Photonic crystals: Imaging by flat lens using negative refraction," Nature, Vol. 426, 404-406, 2003.
doi:10.1038/426404a Google Scholar
8. Tretyakov, S., I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 695-706, 2003.
doi:10.1163/156939303322226356 Google Scholar
9. Tretyakov, S., A. Sihvola, and L. Jylha, "Backward-wave regime and negative refraction in chiral composites," Photonics Nanostruct. Fundam. Appl., Vol. 3, No. 2-3, 107-115, 2005.
doi:10.1016/j.photonics.2005.09.008 Google Scholar
10. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, 1353-1355, 2004.
doi:10.1126/science.1104467 Google Scholar
11. Mackay, T. G., "Plane waves with negative phase velocity in isotropic chiral mediums," Microwave Opt. Tech. Lett., Vol. 45, No. 2, 120-121, 2005.
doi:10.1002/mop.20742 Google Scholar
12. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B, Vol. 79, 121104, 2009.
doi:10.1103/PhysRevB.79.121104 Google Scholar
13. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, 035407, 2009.
doi:10.1103/PhysRevB.79.035407 Google Scholar
14. Zhang, S., Y. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, "Negative refractive index in chiral metamaterials," Phys. Rev. Lett., Vol. 102, 023901, 2009.
doi:10.1103/PhysRevLett.102.023901 Google Scholar
15. Dong, J. and C. Xu, "Characteristics of guided modes in planar chiral nihility meta-material waveguides," Progress In Electromagnetics Research B, Vol. 14, 107-126, 2009.
doi:10.2528/PIERB09012201 Google Scholar
16. Dong, J. F., "Surface wave modes in chiral negative refraction grounded slab waveguides," Progress In Electromagnetics Research, Vol. 95, 153-166, 2009.
doi:10.2528/PIER09062604 Google Scholar
17. Dong, J., "Exotic characteristics of power propagation in the chiral nihility fiber," Progress In Electromagnetics Research, Vol. 99, 163-178, 2009.
doi:10.2528/PIER09102801 Google Scholar
18. Dong, J., J. Li, and F.-Q. Yang, "Guided modes in the four-layer slab waveguide containing chiral nihility core," Progress In Electromagnetics Research, Vol. 112, 241-255, 2011. Google Scholar
19. Rahim, T., M. J. Mughal, and Q. A. Naqvi, "PEMC paraboloidal reflector in chiral medium supporting positive phase velocity and negative phase velocity simultaneously," Progress In Electromagnetics Research Letters, Vol. 10, 77-86, 2009.
doi:10.2528/PIERL09052103 Google Scholar
20. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a chiral-coated nihility cylinder," Progress In Electromagnetics Research Letters, Vol. 18, 41-50, 2010.
doi:10.2528/PIERL10072807 Google Scholar
21. Mehmood, M. Q., M. J. Mughal, and T. Rahim, "Focal region fields of cassegrain system placed in homogeneous chiral medium," Progress In Electromagnetics Research B, Vol. 21, 329-346, 2010. Google Scholar
22. Rahim, T. and M. J. Mughal, "Spherical reflector in chiral medium supporting positive phase velocity and negative phase velocity simultaneously," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1665-1673, 2009. Google Scholar
23. Naqvi, Q. A., "Fractional dual solutions in grounded chiral nihility slab and their effect on outside field," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 773-784, 2009.
doi:10.1163/156939309788019958 Google Scholar
24. Naqvi, A., A. Hussain, and Q. A. Naqvi, "Waves in fractional dual planar waveguides containing chiral nihility metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1575-1586, 2010.
doi:10.1163/156939310792149614 Google Scholar
25. Tuz, V. R. and C.-W. Qiu, "Semi-infinite chiral nihility photonics: Parametric dependence, wave tunneling and rejection," Progress In Electromagnetics Research, Vol. 103, 139-152, 2010.
doi:10.2528/PIER10030706 Google Scholar
26. Dong, J., J. Zhou, T. Koschny, and C. Soukoulis, "Bi-layer cross chiral structure with strong optical activity and negative refractive index ," Optics Express, Vol. 17, No. 16, 14172-14179, 2009.
doi:10.1364/OE.17.014172 Google Scholar
27. Rogacheva, A. V., V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure," Phys. Rev. Lett., Vol. 97, 177401, 2006.
doi:10.1103/PhysRevLett.97.177401 Google Scholar
28. Plum, E., V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling ," Appl. Phys. Lett., Vol. 90, No. 22, 223113, 2007.
doi:10.1063/1.2745203 Google Scholar
29. Decker, M., R. Zhao, C. M. Soukoulis, S. Linden, and M.Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity ," Opt. Lett., Vol. 35, No. 10, 1593-1595, 2010.
doi:10.1364/OL.35.001593 Google Scholar
30. Xiong, X., W. Sun, Y. Bao, M. Wang, R. Peng, C. Sun, X. Lu, J. Shao, Z. Feng, and N. Ming, "Construction of a chiral metamaterial with a U-shaped resonator assembly," Phys. Rev. B, Vol. 81, 075119, 2010.
doi:10.1103/PhysRevB.81.075119 Google Scholar
31. Li, Z., R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, "Chiral metamaterials with negative refractive index based on four ``U" split ring resonators," Appl. Phys. Lett, Vol. 97, 081901, 2010.
doi:10.1063/1.3457448 Google Scholar
32. Wu, Z., B. Q. Zeng, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.
doi:10.1163/156939310791285173 Google Scholar
33. Wu, Z., J. Zhu, M. Jia, H. Lu, and B. Zeng, "A double-chiral configuration," Microwave Opt. Tech. Lett., Vol. 53, No. 1, 163-166, 2011.
doi:10.1002/mop.25645 Google Scholar
34. Ye, Y. and S. He, "90ο polarization rotator using a bilayered chiral metamaterial with giant optical activity," Appl. Phys. Lett., Vol. 96, 203501, 2010.
doi:10.1063/1.3429683 Google Scholar
35. Cheng, Q., W. X. Jiang, and T. J. Cui, "Investigations of the electromagnetic properties of three-dimensional arbitrarily-shaped cloaks ," Progress In Electromagnetics Research, Vol. 94, 105-117, 2009.
doi:10.2528/PIER09060705 Google Scholar
36. Luo, Y., J. Zhang, H. Chen, B.-I. Wu, and L.-X. Ran, "Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect," Progress In Electromagnetics Research, Vol. 95, 167-178, 2009.
doi:10.2528/PIER09070805 Google Scholar
37. Han, T. C., C.-W. Qiu, and X. H. Tang, "Creating rigorous open cloaks," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1839-1847, 2010. Google Scholar
38. Jin, Y. and S. He, "Focusing by a slab of chiral medium," Optics Express, Vol. 13, No. 13, 4974-4979, 2005.
doi:10.1364/OPEX.13.004974 Google Scholar
39. Monzon, C. and D. W. Forester, "Negative refraction and focusing of circularly polarized waves in optically active media," Phys. Rev. Lett., Vol. 95, 123904, 2005.
doi:10.1103/PhysRevLett.95.123904 Google Scholar
40. Cheng, Q., H. F. Ma, and T. J. Cui, "A complementary lens based on broadband metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 93-101, 2010.
doi:10.1163/156939310790322172 Google Scholar
41. Illahi, A. and Q. A. Naqvi, "Study of focusing of electromagnetic waves reflected by a PEMC backed chiral nihility reflector using Maslov's method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 863-873, 2009.
doi:10.1163/156939309788355216 Google Scholar
42. Liu, H. and S. He, "Near-field optical storage system using a solid immersion lens with a left-handed material slab ," Optics Express, Vol. 12, No. 20, 4835-4840, 2004.
doi:10.1364/OPEX.12.004835 Google Scholar
43. Navarro-Cia, M., M. Beruete, F. J. Falcone, M. Sorolla, and I. Campillo, "Polarization-tunable negative or positive refraction in self-complementariness-based extraordinary transmission prism," Progress In Electromagnetics Research, Vol. 103, 101-114, 2010.
doi:10.2528/PIER10030108 Google Scholar
44. Wang, J., S. Qu, H. Ma, Y. Yang, X. Wu, Z. Xu, and M. Hao, "Wide-angle polarization-independent planar left-handed metamaterials based on dielectric resonators," Progress In Electromagnetics Research B, Vol. 12, 243-258, 2009.
doi:10.2528/PIERB08121609 Google Scholar
45. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Boston, 1994.
46. Zhao, R., L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, "Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index," Phys. Rev. B, Vol. 83, 035105, 2010. Google Scholar