1. Lazaro, A., D. Girbau and R. Villarino, "Simulated and experimental investigation of microwave imaging using UWB," Progress In Electromagnetics Research, Vol. 94, 263-280, 2009.
doi:10.2528/PIER09061004 Google Scholar
2. O'Halloran, M., E. Jones, and M. Glavin, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetics Research, Vol. 103, 153-168, 2010.
doi:10.2528/PIER10030902 Google Scholar
3. Maskooki, A., E. Gunawan, C. B. Soh, and K. S. Low, "Frequency domain skin artifact removal method for ultra-wideband breast cancer detection ," Progress In Electromagnetics Research, Vol. 98, 299-314, 2009.
doi:10.2528/PIER09101302 Google Scholar
4. AlShehri, S. A. and S. Khatun, "UWB imaging for breast cancer detection using neural network," Progress In Electromagnetics Research C, Vol. 7, 79-93, 2009.
doi:10.2528/PIERC09031202 Google Scholar
5. Zainud-Deen, S. H., W. M. Hassen, E. El Deen Ali, and K. H. Awadalla, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703 Google Scholar
6. Zhou, H., T. Takenaka, J. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001 Google Scholar
7. Fear, E., J. Sill, and M. Stuchly, "Microwave system for breast tumor detection: experimental concept evaluation," IEEE APS International Symposium and USNC/URSI Radio Science Meeting, Vol. 1, 819-822, June 2000. Google Scholar
8. Khalaj Amineh, R., A. Trehan, and N. K. Nikolova, "TEM horn antenna for ultra-wide band microwave breast imaging," Progress In Electromagnetics Research B, Vol. 13, 59-74, 2009.
doi:10.2528/PIERB08122213 Google Scholar
9. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 3, 130-132, 2001.
doi:10.1109/7260.915627 Google Scholar
10. Li, X., E. J. Bond, B. D. V. Veen, and S. C. Hagness, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas and Propagation Magazine, Vol. 47, No. 1, 19-34, February 2005.
doi:10.1109/MAP.2005.1436217 Google Scholar
11. O'Halloran, M., E. Jones, and M. Glavin, "Effects of ¯broglandular distribution on data-independent beamformering algorithms," Progress In Electromagnetics Research, Vol. 97, 141-158, 2009.
doi:10.2528/PIER09081701 Google Scholar
12. O'Halloran, M., M. Glavin, and E. Jones, "Quasi-multistatic MIST beamforming for the early detection of breast cancer," IEEE Trans. Biomed. Eng., Vol. 57, No. 4, 830-840, 2009.
doi:10.1109/TBME.2009.2016392 Google Scholar
13. Zhang, H., S. Tan, and H. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701 Google Scholar
14. Bindu, G., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802 Google Scholar
15. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machines for the classification of early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010.
doi:10.2528/PIERB10062407 Google Scholar
16. McGinley, B., M. O'Halloran, R. C. Conceicao, F. Morgan, M. Glavin, and E. Jones, "Spiking neural networks for breast cancer classification using radar target signatures," Progress In Electromagnetics Research C, Vol. 17, 79-94, 2010.
doi:10.2528/PIERC10100202 Google Scholar
17. O'Halloran, M., B. McGinley, R. C. Conceicao, F. Morgan, E. Jones, and M. Glavin, "Spiking neural networks for breast cancer classification in a dielectrically heterogeneous breast," Progress In Electromagnetics Research, Vol. 113, 413-428, 2011. Google Scholar
18. Ziganshin, E., M. Numerov, and S. Vygolov, "UWB baby monitor,", 159-161, 2010. Google Scholar
19. Staderini, E., "UWB radars in medicine," IEEE Aerospace and Electronic Systems Magazine, Vol. 17, No. 1, 13-18, January 2002.
doi:10.1109/62.978359 Google Scholar
20. Chia, M., S. Leong, C. Sim, and K. Chan, "Through-wall UWB radar operating within fcc's mask for sensing heart beat and breathing rate,", 267-270, 2005. Google Scholar
21. Zito, D., D. Pepe, B. Neri, and D. De Rossi, "Feasibility study of a low-cost system-on-a-chip UWB pulse radar on silicon for the heart monitoring,", 32-36, 2007. Google Scholar
22. Otto, C., A. Milenkovic, C. Sanders, and E. Jovanov, "System architecture of a wireless body area sensor network for ubiquitous health monitoring," Journal of Mobile Multimedia, Vol. 1, No. 4, 307-326, 2006. Google Scholar
23. Adams, M., "The JPEG-2000 still image compression standard," ISO/IEC JTC 1/SC 29/WG 1 N 2412., 2001. Google Scholar
24. Said, A. and W. Pearlman, "A new, fast, and e±cient image codec based on set partitioning in hierarchical trees," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 6, No. 3, 243-250, 2002.
doi:10.1109/76.499834 Google Scholar
25. Unser, M. and A. Aldroubi, "A review of wavelets in biomedical applications," Proceedings of the IEEE, Vol. 84, No. 4, 626-638, 2002.
doi:10.1109/5.488704 Google Scholar
26. Mallat, S., "A Wavelet Tour of Signal Processing," Academic Press, 1999. Google Scholar
27. Daubechies, I., "Orthonormal bases of compactly supported wavelets,", Vol. 41, No. 7, 909-996, 1988. Google Scholar
28. Graps, A., "An introduction to wavelets," IEEE Computational Science & Engineering, Vol. 2, No. 2, 50-61, 1995.
doi:10.1109/99.388960 Google Scholar
29. "ISO/IEC 15444-1:2000," ISO | International Organization for Standardization Std., 2000. Google Scholar
30. Higgins, G.S. Faul, R. McEvoy, B. McGinley, M. Glavin, W. Marnane, and E. Jones, "EEG compression using JPEG2000: How much loss is too much?," 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 614-617, 2010.
doi:10.1109/IEMBS.2005.1617159
31. Nguyen, M. and R. Rangayyan, "Shape analysis of breast masses in mammograms via the fractial dimension," Engineering in Medicine and Biology 27th Annual Conference, 3210-3213, 2005. Google Scholar
32. Muinonen, K., "Introducing the gaussian shape hypothesis for asteroids and comets," Astronomy and Astrophysics, Vol. 332, 1087-1098, 1998. Google Scholar
33. Muinonen, K., "Light Scattering by Stochastically Shaped Particles.," Academic Press, 2000.
doi:10.1109/TBME.2007.900564 Google Scholar
34. Davis, S. K., B. D. V. Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband backscatter," IEEE Trans. Biomed. Eng., Vol. 55, No. 1, 237-246, 2008. Google Scholar
35. Taflove, A. and S. C. Hagness, "Computational Electrodynamics: The Finite-difference Time-domain Method," Artech House, June 2005.
doi:10.1002/cpa.3160450502 Google Scholar
36. Cohen, A., I. Daubechies, and J. Feauveau, "Biorthogonal bases of compactly supported wavelets," Communications on Pure and Applied Mathematics, Vol. 45, No. 5, 485-560, 1992. Google Scholar
37. Lu, Z., D. Kim, and W. Pearlman, "Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm," IEEE Transactions on Biomedical Engineering, Vol. 47, No. 7, 849-856, 2002. Google Scholar
38. Hilton, M., "Wavelet and wavelet packet compression of electrocardiograms," IEEE Transactions on Biomedical Engineering, Vol. 44, No. 5, 402, 2002. Google Scholar