Vol. 118
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-07-03
A Higher Order Analysis of a Class of Inhomogeneously Filled Conducting Waveguides
By
Progress In Electromagnetics Research, Vol. 118, 223-241, 2011
Abstract
A higher order analysis is applied to solve the problem of a class of inhomogeneously-filled conducting waveguides. This includes an arbitrary but smooth hollow conducting waveguides and waveguides filled with layered inhomogeneous materials. The method employs a set of spline-harmonic basis functions and leads to one-dimensional integrals for system matrix elements. This fact along with the higher order nature of the basis functions provides an accurate method for the analysis of the aforementioned waveguides. The accuracy and the convergence behavior of the method are studied through several numerical examples and the results are compared with the exact solutions and with the results of Ansoft HFSS simulator to establish the validity of the proposed method.
Citation
Ehsan Khodapanah, and Saeid Nikmehr, "A Higher Order Analysis of a Class of Inhomogeneously Filled Conducting Waveguides," Progress In Electromagnetics Research, Vol. 118, 223-241, 2011.
doi:10.2528/PIER11040902
References

1. Hasar, U. C., "Thickness-independent automated constitutive parameters extraction of thin solid and liquid materials from waveguide measurements," Progress In Electromagnetics Research, Vol. 92, 17-32, 2009.
doi:10.2528/PIER09031606

2. Hasar, U. C., "Thickness-independent complex permittivity determination of partially filled thin dielectric materials into rectangular waveguides," Progress In Electromagnetics Research, Vol. 93, 189-203, 2009.
doi:10.2528/PIER09042212

3. Kancleris, Z., G. Slekas, V. Tamosiunas, and M. Tamosiuniene, "Resistive sensor for high power microwave pulse measurement of TE01 mode in circular waveguide," Progress In Electromagnetics Research, Vol. 92, 267-280, 2009.
doi:10.2528/PIER09041409

4. Sangster, A. J. and J. Grant, "Mode degeneracy in circular cylindrical ridge waveguides," Progress In Electromagnetics Research Letters, Vol. 9, 75-83, 2009.
doi:10.2528/PIERL08121804

5. Khalilpour, J. and M. Hakkak, "Controllable waveguide bandstop filter using s-shaped ring resonators," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 587-596, 2010.
doi:10.1163/156939310791036458

6. Siakavara, K. and C. Damianidis, "Microwave filtering in waveguides loaded with artificial single or double negative materials realized with dielectric spherical particles in resonance," Progress In Electromagnetics Research, Vol. 95, 103-120, 2009.
doi:10.2528/PIER09061506

7. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Hoboken, NJ, 2005.

8. Harrington, R. F., Time Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.

9. Skobelev, S. P. and P. S. Kildal, "A new type of the quasi-TEM eigenmodes in a rectangular waveguide with one corrugated hard wall," Progress In Electromagnetics Research, Vol. 102, 143-157, 2010.
doi:10.2528/PIER09122305

10. Xu, J., W. X. Wang, L. N. Yue, Y. B. Gong, and Y. Y. Wei, "Electromagnetic wave propagation in an elliptical chiroferrite waveguide," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 2021-2030, 2009.
doi:10.1163/156939309789932430

11. Ma, J. G., "Numerical analysis of the characteristics of TE-modes of waveguides loaded with inhomogeneous dielectrics," IEE Proc. PtH, Vol. 138, 109-112, 1991.

12. Bulley, R. M., "Analysis of the arbitrary shaped waveguide by polynomial approximation," IEEE Trans. Microwave Theory Tech., Vol. 18, No. 12, 1022-1028, Dec. 1970.
doi:10.1109/TMTT.1970.1127406

13. Lin, S. L., L. W. Li, T. S. Yeo, and M. S. Leong, "Analysis of hollow conducting waveguides using superquadric functions --- A unified representation," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 5, 876-880, May 2000.
doi:10.1109/22.841893

14. Thomas, D. T., "Functional approximations for solving boundary value problems by computer," IEEE Trans. Microwave Theory Tech., Vol. 17, No. 8, 447-454, Aug. 1969.
doi:10.1109/TMTT.1969.1126995

15. Reutskiy, S. Y., "The methods of external excitation for analysis of arbitrarily-shaped hollow conducting waveguides," Progress In Electromagnetics Research, Vol. 82, 203-226, 2008.
doi:10.2528/PIER08022701

16. Kim, C. Y., S. D. Yu, R. F., Harrington, J. W. Ra, and S. Y. Lee, "Computation of waveguide modes for waveguides of arbitrary cross-section," IEE Proc. PtH, Vol. 137, No. 2, 145-149, Apr. 1990.

17. Paul, S. S., M. Goggans, A. A., and Kishk, "Computation of cutoff wavenumbers for partially filled waveguides of arbitrary cross section using surface integral formulations and the method of moments," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 6-7, 1111-1118, Jun./Jul. 1993.

18. Lee, J. F., D. K., Sun, Z. J., and Cendes, "Full-wave analysis of dielectric waveguides using tangential vector finite elements," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 8, 1262-1271, Aug. 1991.
doi:10.1109/22.85399

19. Lee, J. F., "Finite element analysis of lossy dielectric waveguides," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 6, 1025-1031, Jun. 1994.
doi:10.1109/22.293572

20. Conciauro, G., M. Bressan, and C. Zuffada, "Waveguide modes via an integral equation leading to a linear matrix eigenvalue problem," IEEE Trans. Microwave Theory Tech., Vol. 32, No. 11, 1495-1504, Nov. 1984.
doi:10.1109/TMTT.1984.1132880

21. Cogollos, S., S. Marini, V. E. Boria, P. Soto, A. Vidal, H. Esteban, J. V. Morro, and B. Gimeno, "Efficient modal analysis of arbitrarily shaped waveguides composed of linear, circular and elliptical arcs using the BI-RME method," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 12, 2378-2390, Dec. 2003.
doi:10.1109/TMTT.2003.819776

22. Silvestre, E., M. A. Abián, B. Gimeno, A. Ferrando, M. V. Andrés, and V. Boria, "Analysis of inhomogeneously filled waveguides using a biorthonormal-basis method," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 4, 589-596, Apr. 2000.
doi:10.1109/22.842031

23. Monsoriu, J. A., A. Coves, B. Gimeno, M. V. Andrés, and E. Silvestre, "A robust and efficient method for obtaining the complex modes in inhomogeneously filled waveguides," Microw. Opt. Tech. Letters, Vol. 37, 218-222, May 2003.
doi:10.1002/mop.10875

24. Hiptmair, R., "Higher order Whitney forms," Progress In Electromagnetics Research, Vol. 32, 271-299, 2001.
doi:10.2528/PIER00080111

25. Ding, D.-Z., R.-S. Chen, and Z. H. Fan, "An efficient SAI preconditioning technique for higher order hierarchical MLFMM implementation," Progress In Electromagnetics Research, Vol. 88, 255-273, 2008.
doi:10.2528/PIER08111501

26. Faghihi, F. and H. Heydari, "Time domain physical optics for the higher-order FDTD modeling in electromagnetic scattering from 3-D complex and combined multiple materials objects," Progress In Electromagnetics Research, Vol. 95, 87-102, 2009.
doi:10.2528/PIER09040407

27. Lai, B., N. Wang, H.-B. Yuan, and C.-H. Liang, "Hybrid method of higher-order MoM and Nyström discretization PO for 3D PEC problems," Progress In Electromagnetics Research, Vol. 109, 381-398, 2010.
doi:10.2528/PIER10081401

28. De Boor, C., A Practical Guide to Splines, Springer-Verlag, New York, 1978.
doi:10.1007/978-1-4612-6333-3