1. Hasar, U. C., "Thickness-independent automated constitutive parameters extraction of thin solid and liquid materials from waveguide measurements," Progress In Electromagnetics Research, Vol. 92, 17-32, 2009.
doi:10.2528/PIER09031606 Google Scholar
2. Hasar, U. C., "Thickness-independent complex permittivity determination of partially filled thin dielectric materials into rectangular waveguides," Progress In Electromagnetics Research, Vol. 93, 189-203, 2009.
doi:10.2528/PIER09042212 Google Scholar
3. Kancleris, Z., G. Slekas, V. Tamosiunas, and M. Tamosiuniene, "Resistive sensor for high power microwave pulse measurement of TE01 mode in circular waveguide," Progress In Electromagnetics Research, Vol. 92, 267-280, 2009.
doi:10.2528/PIER09041409 Google Scholar
4. Sangster, A. J. and J. Grant, "Mode degeneracy in circular cylindrical ridge waveguides," Progress In Electromagnetics Research Letters, Vol. 9, 75-83, 2009.
doi:10.2528/PIERL08121804 Google Scholar
5. Khalilpour, J. and M. Hakkak, "Controllable waveguide bandstop filter using s-shaped ring resonators," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 587-596, 2010.
doi:10.1163/156939310791036458 Google Scholar
6. Siakavara, K. and C. Damianidis, "Microwave filtering in waveguides loaded with artificial single or double negative materials realized with dielectric spherical particles in resonance," Progress In Electromagnetics Research, Vol. 95, 103-120, 2009.
doi:10.2528/PIER09061506 Google Scholar
7. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2005.
8. Harrington, R. F., Time Harmonic Electromagnetic Fields, McGraw-Hill, 1961.
9. Skobelev, S. P. and P. S. Kildal, "A new type of the quasi-TEM eigenmodes in a rectangular waveguide with one corrugated hard wall," Progress In Electromagnetics Research, Vol. 102, 143-157, 2010.
doi:10.2528/PIER09122305 Google Scholar
10. Xu, J., W. X. Wang, L. N. Yue, Y. B. Gong, and Y. Y. Wei, "Electromagnetic wave propagation in an elliptical chiroferrite waveguide," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 2021-2030, 2009.
doi:10.1163/156939309789932430 Google Scholar
11. Ma, J. G., "Numerical analysis of the characteristics of TE-modes of waveguides loaded with inhomogeneous dielectrics," IEE Proc. PtH, Vol. 138, 109-112, 1991. Google Scholar
12. Bulley, R. M., "Analysis of the arbitrary shaped waveguide by polynomial approximation," IEEE Trans. Microwave Theory Tech., Vol. 18, No. 12, 1022-1028, Dec. 1970.
doi:10.1109/TMTT.1970.1127406 Google Scholar
13. Lin, S. L., L. W. Li, T. S. Yeo, and M. S. Leong, "Analysis of hollow conducting waveguides using superquadric functions --- A unified representation," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 5, 876-880, May 2000.
doi:10.1109/22.841893 Google Scholar
14. Thomas, D. T., "Functional approximations for solving boundary value problems by computer," IEEE Trans. Microwave Theory Tech., Vol. 17, No. 8, 447-454, Aug. 1969.
doi:10.1109/TMTT.1969.1126995 Google Scholar
15. Reutskiy, S. Y., "The methods of external excitation for analysis of arbitrarily-shaped hollow conducting waveguides," Progress In Electromagnetics Research, Vol. 82, 203-226, 2008.
doi:10.2528/PIER08022701 Google Scholar
16. Kim, C. Y., S. D. Yu, R. F., Harrington, J. W. Ra, and S. Y. Lee, "Computation of waveguide modes for waveguides of arbitrary cross-section," IEE Proc. PtH, Vol. 137, No. 2, 145-149, Apr. 1990. Google Scholar
17. Paul, S. S., M. Goggans, A. A., and Kishk, "Computation of cutoff wavenumbers for partially filled waveguides of arbitrary cross section using surface integral formulations and the method of moments," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 6-7, 1111-1118, Jun./Jul. 1993. Google Scholar
18. Lee, J. F., D. K., Sun, Z. J., and Cendes, "Full-wave analysis of dielectric waveguides using tangential vector finite elements," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 8, 1262-1271, Aug. 1991.
doi:10.1109/22.85399 Google Scholar
19. Lee, J. F., "Finite element analysis of lossy dielectric waveguides," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 6, 1025-1031, Jun. 1994.
doi:10.1109/22.293572 Google Scholar
20. Conciauro, G., M. Bressan, and C. Zuffada, "Waveguide modes via an integral equation leading to a linear matrix eigenvalue problem," IEEE Trans. Microwave Theory Tech., Vol. 32, No. 11, 1495-1504, Nov. 1984.
doi:10.1109/TMTT.1984.1132880 Google Scholar
21. Cogollos, S., S. Marini, V. E. Boria, P. Soto, A. Vidal, H. Esteban, J. V. Morro, and B. Gimeno, "Efficient modal analysis of arbitrarily shaped waveguides composed of linear, circular and elliptical arcs using the BI-RME method," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 12, 2378-2390, Dec. 2003.
doi:10.1109/TMTT.2003.819776 Google Scholar
22. Silvestre, E., M. A. Abián, B. Gimeno, A. Ferrando, M. V. Andrés, and V. Boria, "Analysis of inhomogeneously filled waveguides using a biorthonormal-basis method," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 4, 589-596, Apr. 2000.
doi:10.1109/22.842031 Google Scholar
23. Monsoriu, J. A., A. Coves, B. Gimeno, M. V. Andrés, and E. Silvestre, "A robust and efficient method for obtaining the complex modes in inhomogeneously filled waveguides," Microw. Opt. Tech. Letters, Vol. 37, 218-222, May 2003.
doi:10.1002/mop.10875 Google Scholar
24. Hiptmair, R., "Higher order Whitney forms," Progress In Electromagnetics Research, Vol. 32, 271-299, 2001.
doi:10.2528/PIER00080111 Google Scholar
25. Ding, D.-Z., R.-S. Chen, and Z. H. Fan, "An efficient SAI preconditioning technique for higher order hierarchical MLFMM implementation," Progress In Electromagnetics Research, Vol. 88, 255-273, 2008.
doi:10.2528/PIER08111501 Google Scholar
26. Faghihi, F. and H. Heydari, "Time domain physical optics for the higher-order FDTD modeling in electromagnetic scattering from 3-D complex and combined multiple materials objects," Progress In Electromagnetics Research, Vol. 95, 87-102, 2009.
doi:10.2528/PIER09040407 Google Scholar
27. Lai, B., N. Wang, H.-B. Yuan, and C.-H. Liang, "Hybrid method of higher-order MoM and Nyström discretization PO for 3D PEC problems," Progress In Electromagnetics Research, Vol. 109, 381-398, 2010.
doi:10.2528/PIER10081401 Google Scholar
28. De Boor, C., A Practical Guide to Splines, Springer-Verlag, 1978.
doi:10.1007/978-1-4612-6333-3