1. Kok, Y. L., "General solution to the multiple-metallic-grooves scattering problem: The fast-polarization case," Applied Opt., Vol. 32, No. 14, 2573-2581, 1993.
doi:10.1364/AO.32.002573 Google Scholar
2. Depine, R. A. and D. C. Skigin, "Scattering from metallic surfaces having a finite number of rectangular grooves," J. Opt. Soc. Am. A, Vol. 11, No. 11, 2844-2850, 1994.
doi:10.1364/JOSAA.11.002844 Google Scholar
3. Reed, J. A. and D. M. Byrne, "Frequency-selective surfaces with multiple apertures within a periodic cell," J. Opt. Soc. Am. A, Vol. 15, No. 3, 660-668, 1998.
doi:10.1364/JOSAA.15.000660 Google Scholar
4. Schiavone, G. A., K. O'Neill, and K. D. Paulsen, "Scattering from groove patterns in a perfectly conducting surface," J. Opt. Soc. Am. A, Vol. 14, No. 9, 660-668, 1997.
doi:10.1364/JOSAA.14.002212 Google Scholar
5. Alavikia, B. and O. M. Ramahi, "Finite-element solution of the problem of scattering from cavities in metallic screens using the surface integral equation as a boundary constraint," J. Opt. Soc. Am. A, Vol. 26, No. 9, 1915-1925, 2009.
doi:10.1364/JOSAA.26.001915 Google Scholar
6. Altintas, A., P. H. Pathak, and M. C. Liang, "A selective modal scheme for the analysis of EM coupling into or radiation from large open-ended waveguide," IEEE Trans. Antennas Propagat., Vol. 36, No. 1, 84-96, 1988.
doi:10.1109/8.1077 Google Scholar
7. Anastassiu, H. T., J. L. Volakis, and D. C. Ross, "The mode matching technique for electromagnetic scattering by cylindrical waveguides with canonical terminations ," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 11-12, 1363-1391, 1995.
doi:10.1163/156939395X00118 Google Scholar
8. Wang, T., R. F. Harrington, and J. R. Mautz, "Electromagnetic scattering and transmission through arbitrary apertures in conducting bodies," IEEE Trans. Antennas Propagat., Vol. 38, No. 1, 1805-1814, 1990.
doi:10.1109/8.102743 Google Scholar
9. Barkeshli, K. and J. L. Volakis, "Electromagnetic scattering from an aperture formed by a rectangular cavity recessed in a ground plane," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 7, 715-734, 1991. Google Scholar
10. Wang, T. M. and H. Ling, "Electromagnetic scattering from three- dimensional cavities via a connection scheme," IEEE Trans. Antennas Propagat., Vol. 39, No. 10, 1505-1513, Oct. 1991.
doi:10.1109/8.97382 Google Scholar
11. Jin, J. M. and J. L. Volakis, "A finite element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 97-104, Jan. 1991.
doi:10.1109/8.64442 Google Scholar
12. Hua, Y. and J. Li, "Analysis of longitudinal shunt waveguide slots using FE-BI," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 2041-2046, 2009.
doi:10.1163/156939309789932520 Google Scholar
13. Yang, M. L. and X. Q. Sheng, "Parallel high-order FE-BI-MLFMA for scattering by large and deep coated cavities loaded with obstacles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1813-1823, 2009.
doi:10.1163/156939309789566932 Google Scholar
14. Peng, Z., X.-Q. Sheng, and F. Yin, "An efficient twofold iterative algorithm of FE-BI-MLFMA using multilevel inverse-based ILU preconditioning," Progress In Electromagnetics Research, Vol. 93, 369-384, 2009.
doi:10.2528/PIER09060305 Google Scholar
15. Toselli, A. and O. Widlund, Domain Decomposition Methods --- Algorithms and Theory, Springer, Berlin, 2005.
16. Cui, Z. W. and Y. P. Han, "The substructure method for scattering by large open-ended cavities," Chinese Journal of Radio Science, Vol. 24, No. 5, 914-919, Oct. 2009. Google Scholar
17. Martini, E., G. Carli, and S. Maci, "A domain decomposition method based on a generalized scattering matrix formalism and a complex source expansion," Progress In Electromagnetics Research B, Vol. 19, 445-473, 2010.
doi:10.2528/PIERB10012110 Google Scholar
18. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855 Google Scholar
19. Gürel, L., O. Ergül, A. Ünal, and T. Malas, "Fast and accurate analysis of large metamaterial structures using the multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 95, 179-198, 2009.
doi:10.2528/PIER09060106 Google Scholar
20. Taboada, J. M., M. G. Araújo, J. M. Bértolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, . Google Scholar
21. Ergül, O., T. Malas, and L. Gürel, "Solutions of largescale electromagnetics problems using an iterative inner-outer scheme with ordinary and approximate multilevel fast multipole algorithms," Progress In Electromagnetics Research, Vol. 106, 203-223, 2010.
doi:10.2528/PIER10061711 Google Scholar
22. Ergül, O. and L. Gürel, "Efficient solutions of metamaterial problems using a low-frequency multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 108, 81-99, 2010.
doi:10.2528/PIER10071104 Google Scholar
23. Shao, H., J. Hu, Z.-P. Nie, G. Han, and S. He, "Hybrid tangential equivalence principle algorithm with MLFMA for analysis of array structures," Progress In Electromagnetics Research, Vol. 113, 127-141, 2011. Google Scholar
24. Jin, J. M., "The Finite Element Method in Electromagnetics," Wiley, New York, 2002. Google Scholar
25. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
26. Liu, J. W. H., "The multifrontal method for sparse matrix solution: Theory and practice," SIAM Rev., Vol. 34, 82-109, 1992.
doi:10.1137/1034004 Google Scholar
27. Tian, J., Z.-Q. Lv, X.-W. Shi, L. Xu, and F. Wei, "An efficient approach for multifrontal algorithm to solve non-positive-definite ¯nite element equations in electromagnetics problems," Progress In Electromagnetics Research, Vol. 95, 121-133, 2009.
doi:10.2528/PIER09070207 Google Scholar
28. Irons, B. M., "A frontal solution program for finite element analysis," SIAM Rev., Vol. 2, 5-32, 1970. Google Scholar
29. Ping, X. W., T. J. Cui, and W. B. Lu, "The combination of bcgstab with multifrontal algorithm to solve FE-BI-MLFMA linear systems arising from inhomogeneous electromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 93, 91-105, 2009.
doi:10.2528/PIER09050604 Google Scholar
30. Ergül, O. and L. Gürel, "Improving iterative solutions of the electric¯eld integral equation via transformations into normal equations ," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2129-2138, 2010.
doi:10.1163/156939310793699082 Google Scholar