Vol. 117
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-06-15
Coupling Matrix Decomposition in Designs and Applications of Microwave Filters
By
Progress In Electromagnetics Research, Vol. 117, 409-423, 2011
Abstract
The relationship between the immittance inverter coefficients and the coupling coefficients is obtained under the non-resonating coupling condition. With the relationship and the determinant properties of the transformation matrix, the coupling matrix could be decomposed to many sub-matrixes for filter designs. The physical significance of the decomposition is discussed. Using this idea, a filter can be decomposed to a number of sub-filters, which could be connected by sections of transmission lines with the same characteristics kept.
Citation
Ke Xiao, Liang Feng Ye, Fei Zhao, Shun-Lian Chai, and Joshua Le-Wei Li, "Coupling Matrix Decomposition in Designs and Applications of Microwave Filters," Progress In Electromagnetics Research, Vol. 117, 409-423, 2011.
doi:10.2528/PIER11042603
References

1. Ragan, G. L., Microwave Transmission Circuits, McGraw Hill, New York, 1948.        Google Scholar

2. Mo, S. G., Z. Y. Yu, and L. Zhang, "Design of triple-mode bandpass filter using improved hexagonal loop resonator," Progress In Electromagntics Research, Vol. 96, 117-125, 2009.
doi:10.2528/PIER09080304        Google Scholar

3. Wen, S. and L. Zhu, "Numerical synthesis design of coupled resonator filters," Progress In Electromagntics Research, Vol. 92, 333-346, 2009.
doi:10.2528/PIER09041102        Google Scholar

4. Hejazi, Z. M., M. C. Scardelletti, F. W. Van Keuls, A. A. Omar, and A. S. Al-Zayed, "EM full-wave analysis and testing of novel quasi-elliptic microstrip filters for ultra narrowband filter design," Progress In Electromagntics Research, Vol. 85, 261-288, 2008.
doi:10.2528/PIER08082605        Google Scholar

5. Kung, C. Y., Y. C. Chen, S. M. Wu, C. F. Yang, and J. S. Sun, "A novel compact 2.4/5.2 GHz dual wideband bandpass filter with deep transmission zero ," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 617-628, 2011.
doi:10.1163/156939311794827168        Google Scholar

6. Naghshvarianjahromi, M., "Novel compact meta-material tunable Quasi elliptic band-pass filter using microstrip to slotline transition," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 617-628, 2011.        Google Scholar

7. Cogollos, S., R. J. Cameron, R. R. Mansour, M. Yu, and V. E. Boria, "Synthesis and design procedure for high performance waveguide filters based on nonresonating nodes," IEEE MTT-S International Microwave Symposium Digest, 1297-1300, 2007.        Google Scholar

8. Zhu, Y. Z., H. S. Song and K. Guan, "Design of optimized selective quasi-elliptic filters," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1357-1366, 2009.
doi:10.1163/156939309789108507        Google Scholar

9. Zhang, L., Z. Y. Yu, and L. Guo, "Compact planar triple-mode bandpass filter with enhanced parasitic coupling," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 495-503, 2010.        Google Scholar

10. Li, R. Q., X. H. Tang, and F. Xiao, "An novel substrate integrated waveguide square cavity dual-mode filter," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 2523-2529, 2009.
doi:10.1163/156939309787612356        Google Scholar

11. Hu, G., C. Liu, L. Yan, K. Huang, and W. Menzel, "Novel dual mode substrate integrated waveguide band-pass filters," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1661-1672, 2010.
doi:10.1163/156939310792149768        Google Scholar

12. Shen, W., W. Y. Yin, and X. W. Sun, "Compact substrate integrated waveguide transversal filter with microstrip dual-mode resonator," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 1887-1896, 2010.        Google Scholar

13. Amari, S. and U. Rosenberg, "New building blocks for modular design of elliptic and self-equalized filters," IEEE Tran. Microwave Theory Tech., Vol. 52, 721-736, 2004.
doi:10.1109/TMTT.2003.821923        Google Scholar

14. Li, R. Q., X. H. Tang, and F. Xiao, "Design of substrate integrated waveguide filters with source/load-multiresonator coupling ," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 1967-1975, 2010.        Google Scholar

15. Chu, Q. X. and L. Fan, "A compact bandpass filter with source-load coupling by using short-circuited coupled lines between ports," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1493-1500, 2010.
doi:10.1163/156939310792149786        Google Scholar

16. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley, Inc., 2001.        Google Scholar