1. Araujo, M. G., J. M. Taboada, F. Obelleiro, J. M. Bertolo, L. Landesa, J. Rivero, and J. L. Rodriguez, "Supercomputer aware approach for the solution of challenging electromagnetic problems," Progress In Electromagnetics Research, Vol. 101, 241-256, 2010.
doi:10.2528/PIER09121007 Google Scholar
2. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,", Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603 Google Scholar
3. ErgÄul, Ä O., T. Malas, and L. GÄurel, "Solutions of large-scale electromagnetics problems using an iterative inner-outer scheme with ordinary and approximate multilevel fast multipole algorithms," Progress In Electromagnetics Research, Vol. 106, 203-223, 2010.
doi:10.2528/PIER10061711 Google Scholar
4. Shi, Y., X. Luan, J. Qin, C. J. Lv, and C. H. Liang, "Multilevel Green's function interpolation method solution of volume/surface integral equation for mixed conducting/bi-isotropic objects," Progress In Electromagnetics Research, Vol. 107, 239-252, 2010.
doi:10.2528/PIER10060209 Google Scholar
5. Chen, Y., S. Yang, S. He, and Z. Nie, "Fast analysis of microstrip antennas over a frequency band using an accurate MoM matrix interpolation technique," Progress In Electromagnetics Research, Vol. 109, 301-324, 2010.
doi:10.2528/PIER10081107 Google Scholar
6. Polimeridis, A. G. and T. V. Yioultsis, "On the direct evaluation of weakly singular integrals in Galerkin mixed potential integral equation formulations," IEEE Trans. Antennas and Propagat., Vol. 56, 3011-3019, 2008.
doi:10.1109/TAP.2008.928782 Google Scholar
7. Rossi, L. and P. J. Cullen, "On the fully numerical evaluation of the linear-shape function times the 3-D Green's function on a plane triangle," IEEE Trans. Microw. Theory Tech., Vol. 47, 398-402, 1999.
doi:10.1109/22.754871 Google Scholar
8. Khayat, M. A. and D. R. Wilton, "Numerical evaluation of singular and near-singular potential integrals," IEEE Trans. Antennas and Propagat., Vol. 53, 3180-3190, 2005.
doi:10.1109/TAP.2005.856342 Google Scholar
9. Graglia, R. D. and G. Lombardi, "Machine precision evaluation of singular and nearly singular potential integrals by use of Gauss quadrature formulas for rational functions," IEEE Trans. Antennas and Propagat., Vol. 56, 981-998, 2008.
doi:10.1109/TAP.2008.919181 Google Scholar
10. Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. AL-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Trans. Antennas and Propagat., Vol. 32, 276-281, 1984.
doi:10.1109/TAP.1984.1143304 Google Scholar
11. triangle, R. D., "On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle," IEEE Trans. Antennas and Propagat., Vol. 41, 1448-1455, 1993.
doi:10.1109/8.247786 Google Scholar
12. Eibert, T. F. and V. Hansen, "On the calculation of potential integrals for linear source distributions on triangular domains," IEEE Trans. Antennas and Propagat., Vol. 43, 1499-1502, 1995.
doi:10.1109/8.475946 Google Scholar
13. Arcioni, P., M. Bressan, and L. Perregrini, "On the evaluation of the double surface integrals arising in the application of the boundary integral method to 3-D problems," IEEE Trans. Microw. Theory Tech., Vol. 45, 436-439, 1997.
doi:10.1109/22.563344 Google Scholar
14. JÄarvenpÄaÄa, S., M. Taskinen, and P. YlÄa-Oijala, "Singularity subtraction technique for high-order polynomial vector basis functions on planar triangles," IEEE Trans. Antennas and Propagat., Vol. 54, 42-49, 2006.
doi:10.1109/TAP.2005.861556 Google Scholar
15. Asvestas, J. S. and H. J. Bilow, "Line-integral approach to computing impedance matrix elements," IEEE Trans. Antennas and Propagat., Vol. 55, 2767-2772, 2007.
doi:10.1109/TAP.2007.905815 Google Scholar
16. Lopez-Pena, S. and J. R. Mosig, "Analytical evaluation of the quadruple static potential integrals on rectangular domains to solve 3-D electromagnetic problems," IEEE Trans. Magn., Vol. 54, 1320-1323, 2009.
doi:10.1109/TMAG.2009.2012613 Google Scholar
17. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, FL, Krieger, 1983. Google Scholar
18. Mosig, J. R., "Arbitrarily shaped microstrip structures and their analysis with a mixed potential integral equation," IEEE Trans. Microw. Theory Tech., Vol. 36, 314-323, 1988.
doi:10.1109/22.3520 Google Scholar
19. Kolundzija, B. M. and A. R. Djordjevic, Electromagnetic Modeling of Composite Metallic and Dielectric Structures, Artech House, Norwood, MA, USA, 2002. Google Scholar
20. Kolundzija, B. M., M. M. Kostic, B. L. Mrdakovic, and D. S. Sumic, "Comparison of different strategies for conversion of triangular mesh into quadrilateral mesh," EuCAP 2010-The 4th European Conference on Antennas and Propagation, 2010. Google Scholar
21. Adams, T. and J. Singh, "A nonrectangular patch model for scattering from surfaces," IEEE Trans. Antennas and Propagat., Vol. 27, 531-535, 1979.
doi:10.1109/TAP.1979.1142128 Google Scholar
22. Tulyathan, P. and E. H. Newman, "A surface patch model for polygonal plates," IEEE Trans. Antennas and Propagat., Vol. 30, 588-593, 1982.
doi:10.1109/TAP.1982.1142841 Google Scholar
23. Kolundzija, B. M., "On the locally continuous formulation of surface doublets," IEEE Trans. Antennas and Propagat., Vol. 46, 1879-1883, 1998.
doi:10.1109/8.743838 Google Scholar
24. GÄurel, L. and O. Ergul, "Singularity of the magnetic-field integral equation and its extraction," IEEE Antennas Wireless Propag. Lett., Vol. 4, 229-232, 2005.
doi:10.1109/LAWP.2005.851103 Google Scholar
25. Gradshteyn, I. S. and I. M. Ryzhik, Tables of Integrals, Series and Products , Academic, New York, 1980. Google Scholar
26. Bailey, D. H., K. Jeyabalan, and X. S. Li, "A comparison of three high-precision quadrature schemes," Experimental Mathematics, Vol. 3, 317-329, 2005.
doi:10.1080/10586458.2005.10128931 Google Scholar
27. Polimeridis, A. G. and J. R. Mosig, "Evaluation of weakly singular integrals via generalized Cartesian product rules based on the double exponential formula," IEEE Trans. Antennas and Propagat., Vol. 58, 1980-1988, 2010.
doi:10.1109/TAP.2010.2046866 Google Scholar
28. Durand, E., Electrostatique: I. Les Distributions, Masson, Paris, 1964 . Google Scholar
29. Notaros, B. M., "Higher order frequency-domain computational electromagnetics," IEEE Trans. Antennas and Propagat., Vol. 56, 2251-2276, 2008.
doi:10.1109/TAP.2008.926784 Google Scholar