Vol. 117
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-06-10
On the Analytic-Numeric Treatment of Weakly Singular Integrals on Arbitrary Polygonal Domains
By
Progress In Electromagnetics Research, Vol. 117, 339-355, 2011
Abstract
An alternative analytical approach to calculate the weakly singular free-space static potential integral associated to uniform sources is presented. Arbitrary oriented flat polygons are considered as integration domains. The technique stands out by its mathematical simplicity and it is based on a novel integral transformation. The presented formula is equivalent to others existing in literature, being also concise and suitable within a singularity subtraction framework. Generalized Cartesian product rules built on the double exponential formula are utilized to integrate numerically the resulting analytical 2D potential integral. As a consequence, drawbacks associated to endpoint singularities in the derivative of the potential are tempered. Numerical examples within a surface integral equation-Method of Moments framework are finally provided.
Citation
Sergio Lopez-Pena Athanasios G. Polimeridis Juan Mosig , "On the Analytic-Numeric Treatment of Weakly Singular Integrals on Arbitrary Polygonal Domains," Progress In Electromagnetics Research, Vol. 117, 339-355, 2011.
doi:10.2528/PIER11050504
http://www.jpier.org/PIER/pier.php?paper=11050504
References

1. Araujo, M. G., J. M. Taboada, F. Obelleiro, J. M. Bertolo, L. Landesa, J. Rivero, and J. L. Rodriguez, "Supercomputer aware approach for the solution of challenging electromagnetic problems," Progress In Electromagnetics Research, Vol. 101, 241-256, 2010.
doi:10.2528/PIER09121007

2. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,", Vol. 105, 15-30, 2010.
doi:10.2528/PIER10041603

3. ErgÄul, Ä O., T. Malas, and L. GÄurel, "Solutions of large-scale electromagnetics problems using an iterative inner-outer scheme with ordinary and approximate multilevel fast multipole algorithms," Progress In Electromagnetics Research, Vol. 106, 203-223, 2010.
doi:10.2528/PIER10061711

4. Shi, Y., X. Luan, J. Qin, C. J. Lv, and C. H. Liang, "Multilevel Green's function interpolation method solution of volume/surface integral equation for mixed conducting/bi-isotropic objects," Progress In Electromagnetics Research, Vol. 107, 239-252, 2010.
doi:10.2528/PIER10060209

5. Chen, Y., S. Yang, S. He, and Z. Nie, "Fast analysis of microstrip antennas over a frequency band using an accurate MoM matrix interpolation technique," Progress In Electromagnetics Research, Vol. 109, 301-324, 2010.
doi:10.2528/PIER10081107

6. Polimeridis, A. G. and T. V. Yioultsis, "On the direct evaluation of weakly singular integrals in Galerkin mixed potential integral equation formulations," IEEE Trans. Antennas and Propagat., Vol. 56, 3011-3019, 2008.
doi:10.1109/TAP.2008.928782

7. Rossi, L. and P. J. Cullen, "On the fully numerical evaluation of the linear-shape function times the 3-D Green's function on a plane triangle," IEEE Trans. Microw. Theory Tech., Vol. 47, 398-402, 1999.
doi:10.1109/22.754871

8. Khayat, M. A. and D. R. Wilton, "Numerical evaluation of singular and near-singular potential integrals," IEEE Trans. Antennas and Propagat., Vol. 53, 3180-3190, 2005.
doi:10.1109/TAP.2005.856342

9. Graglia, R. D. and G. Lombardi, "Machine precision evaluation of singular and nearly singular potential integrals by use of Gauss quadrature formulas for rational functions," IEEE Trans. Antennas and Propagat., Vol. 56, 981-998, 2008.
doi:10.1109/TAP.2008.919181

10. Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. AL-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Trans. Antennas and Propagat., Vol. 32, 276-281, 1984.
doi:10.1109/TAP.1984.1143304

11. triangle, R. D., "On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle," IEEE Trans. Antennas and Propagat., Vol. 41, 1448-1455, 1993.
doi:10.1109/8.247786

12. Eibert, T. F. and V. Hansen, "On the calculation of potential integrals for linear source distributions on triangular domains," IEEE Trans. Antennas and Propagat., Vol. 43, 1499-1502, 1995.
doi:10.1109/8.475946

13. Arcioni, P., M. Bressan, and L. Perregrini, "On the evaluation of the double surface integrals arising in the application of the boundary integral method to 3-D problems," IEEE Trans. Microw. Theory Tech., Vol. 45, 436-439, 1997.
doi:10.1109/22.563344

14. JÄarvenpÄaÄa, S., M. Taskinen, and P. YlÄa-Oijala, "Singularity subtraction technique for high-order polynomial vector basis functions on planar triangles," IEEE Trans. Antennas and Propagat., Vol. 54, 42-49, 2006.
doi:10.1109/TAP.2005.861556

15. Asvestas, J. S. and H. J. Bilow, "Line-integral approach to computing impedance matrix elements," IEEE Trans. Antennas and Propagat., Vol. 55, 2767-2772.
doi:10.1109/TAP.2007.905815

16. Lopez-Pena, S. and J. R. Mosig, "Analytical evaluation of the quadruple static potential integrals on rectangular domains to solve 3-D electromagnetic problems," IEEE Trans. Magn., Vol. 54, 1320-1323, 2009.
doi:10.1109/TMAG.2009.2012613

17. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, FL, Krieger, 1983.

18. Mosig, J. R., "Arbitrarily shaped microstrip structures and their analysis with a mixed potential integral equation," IEEE Trans. Microw. Theory Tech., Vol. 36, 314-323, 1988.
doi:10.1109/22.3520

19. Kolundzija, B. M. and A. R. Djordjevic, Electromagnetic Modeling of Composite Metallic and Dielectric Structures, Artech House, Norwood, MA, USA, 2002.

20. Kolundzija, B. M., M. M. Kostic, B. L. Mrdakovic, and D. S. Sumic, "Comparison of different strategies for conversion of triangular mesh into quadrilateral mesh," EuCAP 2010-The 4th European Conference on Antennas and Propagation, 2010.

21. Adams, T. and J. Singh, "A nonrectangular patch model for scattering from surfaces," IEEE Trans. Antennas and Propagat., Vol. 27, 531-535, 1979.
doi:10.1109/TAP.1979.1142128

22. Tulyathan, P. and E. H. Newman, "A surface patch model for polygonal plates," IEEE Trans. Antennas and Propagat., Vol. 30, 588-593, 1982.
doi:10.1109/TAP.1982.1142841

23. Kolundzija, B. M., "On the locally continuous formulation of surface doublets," IEEE Trans. Antennas and Propagat., Vol. 46, 1879-1883, 1998.
doi:10.1109/8.743838

24. GÄurel, L. and O. Ergul, "Singularity of the magnetic-field integral equation and its extraction," IEEE Antennas Wireless Propag. Lett., Vol. 4, 229-232, 2005.
doi:10.1109/LAWP.2005.851103

25. Gradshteyn, I. S. and I. M. Ryzhik, Tables of Integrals, Series and Products , Academic, New York, 1980.

26. Bailey, D. H., K. Jeyabalan, and X. S. Li, "A comparison of three high-precision quadrature schemes," Experimental Mathematics, Vol. 3, 317-329, 2005.
doi:10.1080/10586458.2005.10128931

27. Polimeridis, A. G. and J. R. Mosig, "Evaluation of weakly singular integrals via generalized Cartesian product rules based on the double exponential formula," IEEE Trans. Antennas and Propagat., Vol. 58, 1980-1988, 2010.
doi:10.1109/TAP.2010.2046866

28. Durand, E., Electrostatique: I. Les Distributions, Masson, Paris, 1964 .

29. Notaros, B. M., "Higher order frequency-domain computational electromagnetics," IEEE Trans. Antennas and Propagat., Vol. 56, 2251-2276, 2008.
doi:10.1109/TAP.2008.926784