Vol. 117
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-06-18
Near-Field and Particle Size Effects in Coherent Raman Scattering
By
Progress In Electromagnetics Research, Vol. 117, 479-494, 2011
Abstract
Nonlinear optical processes have been used for sensitive detection of chemicals, optical imaging and spectral analysis of small particles. We have developed an exact theoretical framework to study the angular dependence of coherent anti-Stokes Raman scattering (CARS) intensity in the near field and far field for nanoparticle and microparticle. We obtain exact analytical solution for the CARS signal valid for arbitrary detection distance. Interesting angular dependence is found for nanoparticle, especially with near field detection. The study includes the effects of focused lasers and particle size on the CARS intensity distribution. We find that the detection distance and particle size do not affect the spectroscopic peaks of CARS. However, interference of reflected waves in nanoparticle can produce a dip in the backscattered spectrum.
Citation
Chong Heng Raymond Ooi , "Near-Field and Particle Size Effects in Coherent Raman Scattering," Progress In Electromagnetics Research, Vol. 117, 479-494, 2011.
doi:10.2528/PIER11051206
http://www.jpier.org/PIER/pier.php?paper=11051206
References

1. Levenson, M. D. and S. S. Kano, Introduction of Nonlinear Spectroscopy, Academic, San Diego, Calif., 1988.

2. Eesley, G. L., CARS Spectroscopy, Pergamon Press, New York, 1981.

3. Kiefer, W., "Recent advances in linear and nonlinear Raman spectroscopy I," J. Raman Spectros, Vol. 38, 1538, 2007.
doi:10.1002/jrs.1902

4. Raymond Ooi, C. H., G. Beadie, G. W. Kattawar, J. F. Reintjes, Y. Rostovtsev, M. S. Zubairy, and M. O. Scully, "Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores," Phys. Rev. A, Vol. 72, 023807, 2005.
doi:10.1103/PhysRevA.72.023807

5. Esposito, A. P., C. E. Talley, T. Huser, C. W. Hollars, C. M. Schaldach, and S. M. Lane, "Analysis of single bacterial spores by micro-Raman spectroscopy," Appl. Spectrosc., Vol. 57, 868, 2003.
doi:10.1366/000370203322102979

6. Scully, M. O., G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, "FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores," PNAS, Vol. 99, 10994, 2002.
doi:10.1073/pnas.172290899

7. Novotny, L., "Allowed and forbidden light in near-field optics. II. Interacting dipolar particles," J. Opt. Soc. Am. A, Vol. 14, 105-113, 1997.
doi:10.1364/JOSAA.14.000105

8. Raymond Ooi, C. H., "Theory of coherent anti-Stokes Raman scattering formesoscopic particle with complex molecules: Angular-dependent spectrum," J. Raman Spectros, Vol. 40, 714, 2009.
doi:10.1002/jrs.2215

9. Zhang, S., S.-X. Gong, Y. Guan, J. Ling, and B. Lu, "A new approach for synthesizing both the radiation and scattering patterns of linear dipole antenna array," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 861-870, 2010.
doi:10.1163/156939310791285137

10. Badhane, H. P., E. P. Samuel, and D. S. Patil, "Peak optical gain at 377 nanometer and near field intensity in zinc oxide based quantum wells using electromagnetic theory," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 351-359, 2009.
doi:10.1163/156939309787604382

11. Nieto-Vesperinas, M., Scattering and Diffraction in Physical Optics, CRC Press, 1999.

12. Rothwell, E. J., Electromagnetics, CRC Press, 2001.

13. Richards, B. and E. Wolf, "Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A, Vol. 253, 358, 1959.

14. Cheng, J. X., A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy," J. Opt. Soc. Am. B, Vol. 19, 1363, 2002.
doi:10.1364/JOSAB.19.001363

15. Frey, H. G., S. Witt, K. Felderer, and R. Guckenberger, "High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip," Phys. Rev. Lett., Vol. 93, 200801, 2004.
doi:10.1103/PhysRevLett.93.200801

16. Cade, N. I., F. Culfaz, L. Eligal, T. Ritman-Meer, F.-M. Huang, F. Festy, and D. Richards, "Plasmonic enhancement of fluorescence and Raman scattering by metal nanotips," NanoBio Technology, Vol. 3, No. 3-4, 203-211, 2009.
doi:10.1007/s12030-009-9020-x

17. Apostol, M. and G. Vaman, "Plasmons and diffraction of an electromagnetic plane wave by a metallic sphere," Progress In Electromagnetics Research, Vol. 98, 97-118, 2009.
doi:10.2528/PIER09100103

18. Handapangoda, C. C., M. Premaratne, and P. N. Pathirana, "Plane wave scattering by a spherical dielectric particle in motion: A relativistic extension of the Mie theory," Progress In Electromagnetics Research, Vol. 112, 349-379, 2011.