1. Hodges, R. E. and Y. Rahmat-Samii, "The evaluation of MFIE integrals with the use of vector triangle basis functions," Microwave and Optical Technology Letters, Vol. 14, No. 1, 9-14, Jan. 1997.
doi:10.1002/(SICI)1098-2760(199701)14:1<9::AID-MOP4>3.0.CO;2-P Google Scholar
2. Graglia, R. D., D. R. Wilton, and A. F. Peterson, "Higher order interpolatory vector bases for computational electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 329-342, Mar. 1997.
doi:10.1109/8.558649 Google Scholar
3. Rius, J. M., E. Ubeda, and J. Parrón, "On the testing of the magnetic field integral equation with RWG basis functions in method of moments," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 11, 1550-1553, Nov. 2001.
doi:10.1109/8.964090 Google Scholar
4. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
5. Wilton, D. R., J. E. Wheeler, and III, "Comparison of convergence rates of the conjugate gradient method applied to various integral equation formulations," Progress In Electromagnetics Research, Vol. 5, 131-158, 1991. Google Scholar
6. Ubeda, E. and J. M. Rius, "MFIE MoM-formulation with curl-conforming basis functions and accurate Kernel-integration in the analysis of perfectly conducting sharp-edged objects," Microwave and Optical Technology Letters, Vol. 44, No. 4, Feb. 2005.
doi:10.1002/mop.20633 Google Scholar
7. Ergül, Ö. and L. Gürel, "The use of curl-conforming basis functions for the magnetic-field integral equation," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 7, 1917-1926, Jul. 2006.
doi:10.1109/TAP.2006.877159 Google Scholar
8. Ubeda, E. and J. M. Rius, "Comments on ``The use of curl-conforming basis functions for the magnetic-field integral equation"," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 7, 2142, Jul. 2008.
doi:10.1109/TAP.2008.924777 Google Scholar
9. Ergül, Ö. and L. Gürel, "Improving the accuracy of the magnetic field integral equation with the linear-linear basis functions," Radio Science, Vol. 41, 2006, RS4004, doi:10.1029/2005RS003307. Google Scholar
10. Ubeda, E. and J. M. Rius, "Novel monopolar MoM-MFIE discretization for the scattering analysis of small objects," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 50-57, Jan. 2006.
doi:10.1109/TAP.2005.861529 Google Scholar
11. Müller, C., Foundations of the Mathematical Theory of Electromagnetic Waves, Springer, Berlin, Germany, 1969.
12. Chao, J. C., Y. J. Liu, F. J. Rizzo, P. A. Martin, and L. Udpa, "Regularized integral equations and curvilinear boundary elements for electromagnetic wave scattering in three dimensions," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 12, 1416-1422, Dec. 1995.
doi:10.1109/8.475931 Google Scholar
13. Ylä-Oijala, P. and M. Taskinen, "Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 12, Dec. 1995.
doi:10.1109/8.475931 Google Scholar
14. Ylä-Oijala, P, M. Taskinen, and S. JÄarvenpää, "Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods ," Radio Science, Vol. 40, No. 6, RS6002, Nov. 2005. Google Scholar
15. Poggio, A. J. and E. K. Miller, "Integral equation solutions of threedimensional scattering problems," Computer Techniques for Electromagnetics, Vol. 4, R. Mittra, Ed., Pergamon Press, Oxford, UK, 1973. Google Scholar
16. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Science, Vol. 12, 709-718, Sep.-Oct. 1977. Google Scholar
17. Chang, Y. and R. F. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Transactions on Antennas and Propagation, Vol. 25, 789-795, Nov. 1977.
doi:10.1109/TAP.1977.1141685 Google Scholar
18. Ubeda, E., J. M. Tamayo, and J. M. Rius, "Orthogonal basis functions for the discretization of the magnetic-field integral equation in the low frequency regime," European Conference on Antennas and Propagation (EUCAP), Barcelona, Apr. 12-16, 2010. Google Scholar
19. Ubeda, E. and J. M. Rius, "New electric-magnetic field integral equation for the scattering analysis of perfectly conducting sharp-edged objects at very low or extremely low frequencies ," IEEE International Symposium on Antennas and Propagation, Toronto, Jul. 11-17, 2010. Google Scholar
20. Wu, W., A. W. Glisson, and D. Kajfez, "A study of two numerical procedures for the electric field integral equation at low frequency," Appl. Computat. Electromagn. Soc. J., Vol. 10, No. 3, Nov. 1995. Google Scholar
21. Lee, J., R. Lee, and R. J. Burkholder, "Loop star basis functions and a robust preconditioner for EFIE scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, Aug. 2003.
doi:10.1109/TAP.2003.814736 Google Scholar
22. Trintinalia, L. C. and H. Ling, "First order triangular patch basis functions for electromagnetic scattering analysis," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 11, 1521-1537, 2001.
doi:10.1163/156939301X00085 Google Scholar
23. Van Bladel, J., Singular Electromagnetic Fields and Sources, Clarendon Press, Oxford, 1991.
24. Ubeda, E. and J. M. Rius, "Monopolar divergence-conforming and curl-conforming low-order basis functions for the electromagnetic scattering analysis," Microwave and Optical Technology Letters, Vol. 46, No. 3, 237-241, Aug. 2005.
doi:10.1002/mop.20955 Google Scholar
25. Taskinen, M., "Electromagnetic surface integral equations and fully orthogonal higher order basis functions ," IEEE International Symposium on Antennas and Propagation, San Diego, Jul. 5-12, 2008. Google Scholar
26. Graglia, R. D., "On the numerical integration of the linear shape functions times the 3D's Green's function or its gradient on a plane triangle," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 10, 1448-1455, Oct. 1993.
doi:10.1109/8.247786 Google Scholar
27. Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 3, 276-281, Mar. 1984.
doi:10.1109/TAP.1984.1143304 Google Scholar
28. Ylä-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.
doi:10.2528/PIER04071301 Google Scholar