Vol. 120
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-08-28
Tunable Single-Negative Metamaterials Based on Microstrip Transmission Line with Varactor Diodes Loading
By
Progress In Electromagnetics Research, Vol. 120, 35-50, 2011
Abstract
In this paper, tunable single-negative (TSNG) metamaterials based on microstrip with varactor diodes loading are investigated. By tuning the external voltage, our structure can provide either an epsilon-negative or a mu-negative band gap, with varying gap width (the ratio of bandwidth to center frequency can be from 0 to over 100%) and depth (from 0 dB to about -30 dB). Moreover, the tunneling mode in a heterostructure constructed by epsilon-negative and TSNG metamaterials is also studied. The results show that its transmission, Q-factor, and electromagnetic localization can also be controlled conveniently. All these properties make our structure promising to be utilized as a practical switching device, or a suitable platform for the study of nonlinear effect in metamaterials.
Citation
Tuanhui Feng, Yunhui Li, Haitao Jiang, Wenxin Li, Fei Yang, Xinping Dong, and Hong Chen, "Tunable Single-Negative Metamaterials Based on Microstrip Transmission Line with Varactor Diodes Loading," Progress In Electromagnetics Research, Vol. 120, 35-50, 2011.
doi:10.2528/PIER11052203
References

1. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966        Google Scholar

2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847        Google Scholar

3. Grbic, A. and G. V. Eleftheriades, "Experimental verification of backward-wave radiation from a negative refractive index metamaterial," J. Appl. Phys., Vol. 92, 5930, 2002.
doi:10.1063/1.1513194        Google Scholar

4. Caloz, C., A. Sanada, and T. Itoh, "A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 3, 980-992, 2004.
doi:10.1109/TMTT.2004.823579        Google Scholar

5. Li, H. Q., J. M. Hao, L. Zhou, Z. Y. Wei, L. K. Gong, H. Chen, and C. T. Chan, "All-dimensional subwavelength cavities made with metamaterials," Appl. Phys. Lett., Vol. 89, 104101, 2006.
doi:10.1063/1.2338795        Google Scholar

6. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and ITS application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306        Google Scholar

7. Mirza, I. O., J. N. Sabas, S. Shi, and D. W. Prather, "Experimental demonstration of metamaterial-based phase modulation," Progress In Electromagnetics Research, Vol. 93, 1-12, 2009.
doi:10.2528/PIER09050412        Google Scholar

8. Hwang, R.-B., H.-W. Liu, and C.-Y. Chin, "A metamaterial-based E-plane horn antenna," Progress In Electromagnetics Research, Vol. 93, 275-289, 2009.
doi:10.2528/PIER09050606        Google Scholar

9. Gurel, L., O. Ergul, A. Unal, and T. Malas, "Fast and accurate analysis of large metamaterial structures using the multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 95, 179-198, 2009.
doi:10.2528/PIER09060106        Google Scholar

10. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research, Vol. 98, 389-405, 2009.
doi:10.2528/PIER09091401        Google Scholar

11. Yu, G.-X., T.-J. Cui, W. X. Jiang, X. M. Yang, Q. Cheng, and Y. Hao, "Transformation of different kinds of electromagnetic waves using metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5--6, 583-592, 2009.
doi:10.1163/156939309788019723        Google Scholar

12. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110        Google Scholar

13. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603        Google Scholar

14. Bucinskas, J., L. Nickelson, and V. Sugurovas, "Microwave scattering and absorption by a multilayered lossy metamaterial --- Glass cylinder," Progress In Electromagnetics Research, Vol. 105, 103-118, 2010.
doi:10.2528/PIER10041711        Google Scholar

15. Choi, J. and C. Seo, "High-efficiency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial," Progress In Electromagnetics Research, Vol. 106, 33-47, 2010.
doi:10.2528/PIER10050609        Google Scholar

16. Wang, B. and K. Huang, "Shaping the radiation pattern with mu and epsilon-near-zero metamaterials," Progress In Electromagnetics Research, Vol. 106, 107-119, 2010.
doi:10.2528/PIER10060103        Google Scholar

17. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409        Google Scholar

18. Gric, T., L. Nickelson, and S. Asmontas, "Electrodynamical characteristic particularity of open metamaterial square and circular waveguides," Progress In Electromagnetics Research, Vol. 109, 361-379, 2010.
doi:10.2528/PIER10082505        Google Scholar

19. Kuo, C.-W., S.-Y. Chen, Y.-D. Wu, and M.-H. Chen, "Analyzing the multilayer optical planar waveguides with double-negative metamaterial," Progress In Electromagnetics Research, Vol. 110, 163-178, 2010.
doi:10.2528/PIER10101405        Google Scholar

20. Cheng, Q., H.-F. Ma, and T.-J. Cui, "A complementary lens based on broadband metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 93-101, 2010.
doi:10.1163/156939310790322172        Google Scholar

21. Wu, Z., B.-Q. Zeng, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, 983-992, 2010.
doi:10.1163/156939310791285173        Google Scholar

22. Pu, T. L., K. M. Huang, B. Wang, and Y. Yang, "Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 1207-1217, 2010.
doi:10.1163/156939310791586025        Google Scholar

23. Liu, Y., X. Chen, and K. Huang, "A novel planar printed array antenna with SRR slots," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2155-2164, 2010.
doi:10.1163/156939310793699127        Google Scholar

24. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2558-2571, 2003.
doi:10.1109/TAP.2003.817553        Google Scholar

25. Jiang, H. T., H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, "Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials," J. Appl. Phys., Vol. 98, 013101, 2005.
doi:10.1063/1.1949273        Google Scholar

26. Feng, T. H., Y. H. Li, H. Chen, and Y. L. Shi, "Light tunneling in a pair structure consisting of epsilon-negative and mu-negative media," Proc. of SPIE, Vol. 6827, 68270G1-9, 2007.        Google Scholar

27. Feng, T. H., Y. H. Li, J. Y. Guo, L. He, H. Q. Li, Y. W. Zhang, Y. L. Shi, and H. Chen, "Highly localized mode in a pair structure made of epsilon-negative and mu-negative metamaterials," J. Appl. Phys., Vol. 104, 013107, 2008.
doi:10.1063/1.2949264        Google Scholar

28. Siakavara, K. and C. Damianidis, "Microwave filtering in waveguides loaded with artificial single or double negative materials realized with dielectric spherical particles in resonance," Progress In Electromagnetics Research, Vol. 95, 103-120, 2009.
doi:10.2528/PIER09061506        Google Scholar

29. Entezar, S. R., A. Namdar, H. Rahimi, and H. Tajalli, "Localized waves at the surface of a single-negative periodic multilayer structure," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2--3, 171-182, 2009.
doi:10.1163/156939309787604427        Google Scholar

30. Manapati, M. B. and R. S. Kshetrimayum, "SAR reduction in human head from mobile phone radiation using single negative metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1385-1395, 2009.
doi:10.1163/156939309789108606        Google Scholar

31. Rahimi, H., A. Namdar, S. Roshan Entezar, and H. Tajalli, "Photonic transmission spectra in one-dimensional fibonacci multilayer structures containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 102, 15-30, 2010.
doi:10.2528/PIER09122303        Google Scholar

32. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773        Google Scholar

33. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002        Google Scholar

34. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184        Google Scholar

35. Huangfu, J. T., L. X. Ran, H. S. Chen, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of V-like metallic patterns," Appl. Phys. Lett., Vol. 84, 1537-1539, 2004.
doi:10.1063/1.1655673        Google Scholar

36. Chen, H. S., L. X. Ran, J. T. Huangfu, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E, Vol. 70, No. 5, 057605, 2004.
doi:10.1103/PhysRevE.70.057605        Google Scholar

37. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 12, 2702-2712, 2002.
doi:10.1109/TMTT.2002.805197        Google Scholar

38. Sanada, A., C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 2, 68-70, 2004.
doi:10.1109/LMWC.2003.822563        Google Scholar

39. Martin, F., J. Bonache, F. Falcone, M. Sorolla, and R. Marqués, "Split ring resonator-based left-handed coplanar waveguide," Appl. Phys. Lett., Vol. 83, 4652-4654, 2003.
doi:10.1063/1.1631392        Google Scholar

40. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett., Vol. 93, 197401, 2004.
doi:10.1103/PhysRevLett.93.197401        Google Scholar

41. Mao, S. G., S. L. Chen, and C. W. Huang, "Effective electromagnetic parameters of novel distributed left-handed microstrip lines," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1515-1521, 2005.
doi:10.1109/TMTT.2005.845192        Google Scholar

42. He, Y. X., P. He, S. D. Yoona, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, "Tunable negative index metamaterial using yttrium iron garnet," J. Magn. Magn. Mater., Vol. 313, 187-191, 2007.
doi:10.1016/j.jmmm.2006.12.031        Google Scholar

43. Kang, L., Q. Zhao, H. J. Zhao, and J. Zhou, "Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods," Opt. Express, Vol. 16, No. 12, 8825-8834, 2008.
doi:10.1364/OE.16.008825        Google Scholar

44. Kang, L., Q. Zhao, H. J. Zhao, and J. Zhou, "Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires," Opt. Express, Vol. 16, No. 22, 17269, 2008.
doi:10.1364/OE.16.017269        Google Scholar

45. Zhao, H. J., L. Kang, J. Zhou, Q. Zhao, L. T. Li, L. Peng, and Y. Bai, "Experimental demonstration of tunable negative phase velocity and negative refraction in a ferromagnetic/ferroelectric composite metamaterial," Appl. Phys. Lett., Vol. 93, 201106, 2008.
doi:10.1063/1.3033397        Google Scholar

46. Zhao, Q., B. Du, L. Kang, H. J. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. T. Li, and Y. G. Meng, "Tunable negative permeability in an isotropic dielectric composite," Appl. Phys. Lett., Vol. 92, 051106, 2008.
doi:10.1063/1.2841811        Google Scholar

47. He, G. H., R. X. Wu, Y. Poo, and P. Chen, "Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh," J. Appl. Phys., Vol. 107, 093522, 2010.
doi:10.1063/1.3359718        Google Scholar

48. Zhang, F. L., L. Kang, Q. Zhao, J. Zhou, X. P. Zhao, and D. Lippens, "Magnetically tunable left handed metamaterials by liquid crystal orientation," Opt. Express, Vol. 17, No. 6, 4360-4366, 2009.
doi:10.1364/OE.17.004360        Google Scholar

49. Degiron, A., J. J. Mock, and D. R. Smith, "Modulating and tuning the response of metamaterials at the unit cell level," Opt. Express, Vol. 15, No. 3, 1115-1127, 2007.
doi:10.1364/OE.15.001115        Google Scholar

50. Shen, N. H., M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, "Optically implemented broadband blueshift switch in the terahertz regime," Phys. Rev. Lett., Vol. 106, 037403, 2011.
doi:10.1103/PhysRevLett.106.037403        Google Scholar

51. Lim, S., C. Caloz, and T. Itoh, "Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 161-173, 2005.
doi:10.1109/TMTT.2005.856086        Google Scholar

52. Gil, I., J. Bonache, J. Garcia-Garcia, and F. Martin, "Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2665-2674, 2005.
doi:10.1109/TMTT.2006.872949        Google Scholar

53. Choi, J. and C. Seo, "Broadband VCO using electronically controlled metamaterial transmission line based on varactor-loaded split-ring resonator," Microw. Opt. Tech. Lett., Vol. 50, No. 4, 1078-1082, 2008.
doi:10.1002/mop.23305        Google Scholar

54. Kapitanova1, P., D. Kholodnyak, and I. Vendik, "Tuneable lumped-element directional coupler using metamaterial transmislumped-element directional coupler using metamaterial transmission lines," Proc. of the 39th European Microwave Conference, Rome, Italy, September 2009.

55. Ourir, A., R. Abdeddaim, and J. de Rosny, "Tunable trapped mode in symmetric resonator designed for metamaterials," Progress In Electromagnetics Research, Vol. 101, 115-123, 2010.
doi:10.2528/PIER09120709        Google Scholar

56. Kozyrev, A. B., H. Kim, A. Karbassi, and D. W. Van Der Weide, "Wave propagation in nonlinear left-handed transmission line media," Appl. Phys. Lett., Vol. 87, 121109, 2005.
doi:10.1063/1.2056581        Google Scholar

57. Powell, D. A., I. V. Shadrivov, and Y. S. Kivshar, "Asymmetric parametric amplification in nonlinear left-handed transmission lines," Appl. Phys. Lett., Vol. 94, 084105, 2009.
doi:10.1063/1.3089842        Google Scholar

58. Kozyrev, A. B. and D. W. Van Der Weide, "Pulse formation in nonlinear left-handed transmission line media," Appl. Phys. Lett., Vol. 96, 104106, 2010.
doi:10.1063/1.3355548        Google Scholar

59. Wang, Z. B., Y. J. Feng, B. Zhu, J. M. Zhao, and T. Jiang, "Dark schrodinger solitons and harmonic generation in left-handed nonlinear transmission line," J. Appl. Phys., Vol. 107, 094907, 2010.
doi:10.1063/1.3418556        Google Scholar