1. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
3. Grbic, A. and G. V. Eleftheriades, "Experimental verification of backward-wave radiation from a negative refractive index metamaterial," J. Appl. Phys., Vol. 92, 5930, 2002.
doi:10.1063/1.1513194 Google Scholar
4. Caloz, C., A. Sanada, and T. Itoh, "A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 3, 980-992, 2004.
doi:10.1109/TMTT.2004.823579 Google Scholar
5. Li, H. Q., J. M. Hao, L. Zhou, Z. Y. Wei, L. K. Gong, H. Chen, and C. T. Chan, "All-dimensional subwavelength cavities made with metamaterials," Appl. Phys. Lett., Vol. 89, 104101, 2006.
doi:10.1063/1.2338795 Google Scholar
6. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and ITS application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306 Google Scholar
7. Mirza, I. O., J. N. Sabas, S. Shi, and D. W. Prather, "Experimental demonstration of metamaterial-based phase modulation," Progress In Electromagnetics Research, Vol. 93, 1-12, 2009.
doi:10.2528/PIER09050412 Google Scholar
8. Hwang, R.-B., H.-W. Liu, and C.-Y. Chin, "A metamaterial-based E-plane horn antenna," Progress In Electromagnetics Research, Vol. 93, 275-289, 2009.
doi:10.2528/PIER09050606 Google Scholar
9. Gurel, L., O. Ergul, A. Unal, and T. Malas, "Fast and accurate analysis of large metamaterial structures using the multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 95, 179-198, 2009.
doi:10.2528/PIER09060106 Google Scholar
10. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research, Vol. 98, 389-405, 2009.
doi:10.2528/PIER09091401 Google Scholar
11. Yu, G.-X., T.-J. Cui, W. X. Jiang, X. M. Yang, Q. Cheng, and Y. Hao, "Transformation of different kinds of electromagnetic waves using metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5--6, 583-592, 2009.
doi:10.1163/156939309788019723 Google Scholar
12. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110 Google Scholar
13. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603 Google Scholar
14. Bucinskas, J., L. Nickelson, and V. Sugurovas, "Microwave scattering and absorption by a multilayered lossy metamaterial --- Glass cylinder," Progress In Electromagnetics Research, Vol. 105, 103-118, 2010.
doi:10.2528/PIER10041711 Google Scholar
15. Choi, J. and C. Seo, "High-efficiency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial," Progress In Electromagnetics Research, Vol. 106, 33-47, 2010.
doi:10.2528/PIER10050609 Google Scholar
16. Wang, B. and K. Huang, "Shaping the radiation pattern with mu and epsilon-near-zero metamaterials," Progress In Electromagnetics Research, Vol. 106, 107-119, 2010.
doi:10.2528/PIER10060103 Google Scholar
17. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409 Google Scholar
18. Gric, T., L. Nickelson, and S. Asmontas, "Electrodynamical characteristic particularity of open metamaterial square and circular waveguides," Progress In Electromagnetics Research, Vol. 109, 361-379, 2010.
doi:10.2528/PIER10082505 Google Scholar
19. Kuo, C.-W., S.-Y. Chen, Y.-D. Wu, and M.-H. Chen, "Analyzing the multilayer optical planar waveguides with double-negative metamaterial," Progress In Electromagnetics Research, Vol. 110, 163-178, 2010.
doi:10.2528/PIER10101405 Google Scholar
20. Cheng, Q., H.-F. Ma, and T.-J. Cui, "A complementary lens based on broadband metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 93-101, 2010.
doi:10.1163/156939310790322172 Google Scholar
21. Wu, Z., B.-Q. Zeng, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, 983-992, 2010.
doi:10.1163/156939310791285173 Google Scholar
22. Pu, T. L., K. M. Huang, B. Wang, and Y. Yang, "Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 1207-1217, 2010.
doi:10.1163/156939310791586025 Google Scholar
23. Liu, Y., X. Chen, and K. Huang, "A novel planar printed array antenna with SRR slots," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2155-2164, 2010.
doi:10.1163/156939310793699127 Google Scholar
24. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2558-2571, 2003.
doi:10.1109/TAP.2003.817553 Google Scholar
25. Jiang, H. T., H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, "Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials," J. Appl. Phys., Vol. 98, 013101, 2005.
doi:10.1063/1.1949273 Google Scholar
26. Feng, T. H., Y. H. Li, H. Chen, and Y. L. Shi, "Light tunneling in a pair structure consisting of epsilon-negative and mu-negative media," Proc. of SPIE, Vol. 6827, 68270G1-9, 2007. Google Scholar
27. Feng, T. H., Y. H. Li, J. Y. Guo, L. He, H. Q. Li, Y. W. Zhang, Y. L. Shi, and H. Chen, "Highly localized mode in a pair structure made of epsilon-negative and mu-negative metamaterials," J. Appl. Phys., Vol. 104, 013107, 2008.
doi:10.1063/1.2949264 Google Scholar
28. Siakavara, K. and C. Damianidis, "Microwave filtering in waveguides loaded with artificial single or double negative materials realized with dielectric spherical particles in resonance," Progress In Electromagnetics Research, Vol. 95, 103-120, 2009.
doi:10.2528/PIER09061506 Google Scholar
29. Entezar, S. R., A. Namdar, H. Rahimi, and H. Tajalli, "Localized waves at the surface of a single-negative periodic multilayer structure," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2--3, 171-182, 2009.
doi:10.1163/156939309787604427 Google Scholar
30. Manapati, M. B. and R. S. Kshetrimayum, "SAR reduction in human head from mobile phone radiation using single negative metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1385-1395, 2009.
doi:10.1163/156939309789108606 Google Scholar
31. Rahimi, H., A. Namdar, S. Roshan Entezar, and H. Tajalli, "Photonic transmission spectra in one-dimensional fibonacci multilayer structures containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 102, 15-30, 2010.
doi:10.2528/PIER09122303 Google Scholar
32. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
33. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
34. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
35. Huangfu, J. T., L. X. Ran, H. S. Chen, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of V-like metallic patterns," Appl. Phys. Lett., Vol. 84, 1537-1539, 2004.
doi:10.1063/1.1655673 Google Scholar
36. Chen, H. S., L. X. Ran, J. T. Huangfu, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E, Vol. 70, No. 5, 057605, 2004.
doi:10.1103/PhysRevE.70.057605 Google Scholar
37. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 12, 2702-2712, 2002.
doi:10.1109/TMTT.2002.805197 Google Scholar
38. Sanada, A., C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 2, 68-70, 2004.
doi:10.1109/LMWC.2003.822563 Google Scholar
39. Martin, F., J. Bonache, F. Falcone, M. Sorolla, and R. Marqués, "Split ring resonator-based left-handed coplanar waveguide," Appl. Phys. Lett., Vol. 83, 4652-4654, 2003.
doi:10.1063/1.1631392 Google Scholar
40. Falcone, F., T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martin, and M. Sorolla, "Babinet principle applied to the design of metasurfaces and metamaterials," Phys. Rev. Lett., Vol. 93, 197401, 2004.
doi:10.1103/PhysRevLett.93.197401 Google Scholar
41. Mao, S. G., S. L. Chen, and C. W. Huang, "Effective electromagnetic parameters of novel distributed left-handed microstrip lines," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1515-1521, 2005.
doi:10.1109/TMTT.2005.845192 Google Scholar
42. He, Y. X., P. He, S. D. Yoona, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, "Tunable negative index metamaterial using yttrium iron garnet," J. Magn. Magn. Mater., Vol. 313, 187-191, 2007.
doi:10.1016/j.jmmm.2006.12.031 Google Scholar
43. Kang, L., Q. Zhao, H. J. Zhao, and J. Zhou, "Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods," Opt. Express, Vol. 16, No. 12, 8825-8834, 2008.
doi:10.1364/OE.16.008825 Google Scholar
44. Kang, L., Q. Zhao, H. J. Zhao, and J. Zhou, "Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires," Opt. Express, Vol. 16, No. 22, 17269, 2008.
doi:10.1364/OE.16.017269 Google Scholar
45. Zhao, H. J., L. Kang, J. Zhou, Q. Zhao, L. T. Li, L. Peng, and Y. Bai, "Experimental demonstration of tunable negative phase velocity and negative refraction in a ferromagnetic/ferroelectric composite metamaterial," Appl. Phys. Lett., Vol. 93, 201106, 2008.
doi:10.1063/1.3033397 Google Scholar
46. Zhao, Q., B. Du, L. Kang, H. J. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. T. Li, and Y. G. Meng, "Tunable negative permeability in an isotropic dielectric composite," Appl. Phys. Lett., Vol. 92, 051106, 2008.
doi:10.1063/1.2841811 Google Scholar
47. He, G. H., R. X. Wu, Y. Poo, and P. Chen, "Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh," J. Appl. Phys., Vol. 107, 093522, 2010.
doi:10.1063/1.3359718 Google Scholar
48. Zhang, F. L., L. Kang, Q. Zhao, J. Zhou, X. P. Zhao, and D. Lippens, "Magnetically tunable left handed metamaterials by liquid crystal orientation," Opt. Express, Vol. 17, No. 6, 4360-4366, 2009.
doi:10.1364/OE.17.004360 Google Scholar
49. Degiron, A., J. J. Mock, and D. R. Smith, "Modulating and tuning the response of metamaterials at the unit cell level," Opt. Express, Vol. 15, No. 3, 1115-1127, 2007.
doi:10.1364/OE.15.001115 Google Scholar
50. Shen, N. H., M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, "Optically implemented broadband blueshift switch in the terahertz regime," Phys. Rev. Lett., Vol. 106, 037403, 2011.
doi:10.1103/PhysRevLett.106.037403 Google Scholar
51. Lim, S., C. Caloz, and T. Itoh, "Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 161-173, 2005.
doi:10.1109/TMTT.2005.856086 Google Scholar
52. Gil, I., J. Bonache, J. Garcia-Garcia, and F. Martin, "Tunable metamaterial transmission lines based on varactor-loaded split-ring resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2665-2674, 2005.
doi:10.1109/TMTT.2006.872949 Google Scholar
53. Choi, J. and C. Seo, "Broadband VCO using electronically controlled metamaterial transmission line based on varactor-loaded split-ring resonator," Microw. Opt. Tech. Lett., Vol. 50, No. 4, 1078-1082, 2008.
doi:10.1002/mop.23305 Google Scholar
54. Kapitanova1, P., D. Kholodnyak, and I. Vendik, "Tuneable lumped-element directional coupler using metamaterial transmislumped-element directional coupler using metamaterial transmission lines," Proc. of the 39th European Microwave Conference, Rome, Italy, September 2009.
55. Ourir, A., R. Abdeddaim, and J. de Rosny, "Tunable trapped mode in symmetric resonator designed for metamaterials," Progress In Electromagnetics Research, Vol. 101, 115-123, 2010.
doi:10.2528/PIER09120709 Google Scholar
56. Kozyrev, A. B., H. Kim, A. Karbassi, and D. W. Van Der Weide, "Wave propagation in nonlinear left-handed transmission line media," Appl. Phys. Lett., Vol. 87, 121109, 2005.
doi:10.1063/1.2056581 Google Scholar
57. Powell, D. A., I. V. Shadrivov, and Y. S. Kivshar, "Asymmetric parametric amplification in nonlinear left-handed transmission lines," Appl. Phys. Lett., Vol. 94, 084105, 2009.
doi:10.1063/1.3089842 Google Scholar
58. Kozyrev, A. B. and D. W. Van Der Weide, "Pulse formation in nonlinear left-handed transmission line media," Appl. Phys. Lett., Vol. 96, 104106, 2010.
doi:10.1063/1.3355548 Google Scholar
59. Wang, Z. B., Y. J. Feng, B. Zhu, J. M. Zhao, and T. Jiang, "Dark schrodinger solitons and harmonic generation in left-handed nonlinear transmission line," J. Appl. Phys., Vol. 107, 094907, 2010.
doi:10.1063/1.3418556 Google Scholar