Vol. 118
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-06-27
Transient Wave Propagation in a General Dispersive Media Using the Laguerre Functions in a Marching-on-in-Degree (MOD) Methodology
By
Progress In Electromagnetics Research, Vol. 118, 135-149, 2011
Abstract
The objective of this paper is to illustrate how the marching-on-in-degree (MOD) method can be used for efficient and accurate solution of transient problems in a general dispersive media using the finite difference time-domain (FDTD) technique. Traditional FDTD methods when solving transient problems in a general dispersive media have disadvantages because they need to approximate the time domain derivatives by finite differences and the time domain convolutions by using finite summations. Here we provide an alternate procedure for transient wave propagation in a general dispersive medium where the two issues related to finite difference approximation in time and the time consuming convolution operations are handled analytically using the properties of the associate Laguerre functions. The basic idea here is that we fit the transient nature of the fields, the permittivity and permeability with a series of orthogonal associate Laguerre basis functions in the time domain. In this way, the time variable can not only be decoupled analytically from the temporal variations but that the final computational form of the equations is transformed from FDTD to a FD formulation in the differential equations after a Galerkin testing. Numerical results are presented for transient wave propagation in general dispersive materials which use for example, a Debye, Drude, or Lorentz models.
Citation
Baek-Ho Jung, Zicong Mei, and Tapan Kumar Sarkar, "Transient Wave Propagation in a General Dispersive Media Using the Laguerre Functions in a Marching-on-in-Degree (MOD) Methodology," Progress In Electromagnetics Research, Vol. 118, 135-149, 2011.
doi:10.2528/PIER11052408
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693

2. Kunz, K. S. and R. J. Ruebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC, Boca Raton, FL, 1993.

3. Sullivan, D. M., Electromagnetic Simulation Using the FDTD Method, IEEE Press, Piscataway, NJ, 2000.

4. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.

5. Luebbers, R., F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. Electromagn. Compat., Vol. 32, No. 3, 222-227, Aug. 1990.
doi:10.1109/15.57116

6. Luebbers, R. J., F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma ," IEEE Trans. Antennas Propag., Vol. 39, No. 1, 29-34, Jan. 1991.
doi:10.1109/8.64431

7. Luebbers, R. J. and F. Hunsberger, "FDTD for Nth-order dispersive media," EEE Trans. Antennas Propag., Vol. 40, No. 11, 1297-1301, Nov. 1992.
doi:10.1109/8.202707

8. Luebbers, R. J., D. Steich, and K. Kunz, "FDTD calculation of scattering from frequency-denpendent materials," IEEE Trans. Antennas Propag., Vol. 41, No. 9, 1249-1257, Sep. 1993.
doi:10.1109/8.247751

9. Kelley, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propag., Vol. 44, No. 6, 792-797, Jun. 1996.
doi:10.1109/8.509882

10. Chung, Y. S., T. K. Sarkar, B. H. Jung, and M. Salazar-Palma, "An unconditionally stable scheme for the finite-difference time-domain method," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 3, 697-704, Mar. 2003.
doi:10.1109/TMTT.2003.808732

11. Jung, B. H. and T. K. Sarkar, "Analysis of transient electromagnetic scattering with plane wave incidence using MOD-FDM," Progress In Electromagnetics Research, Vol. 77, 111-120, 2007.
doi:10.2528/PIER07080302

12. Jung, B. H. and T. K. Sarkar, "Solving time domain Helmholtz wave equation with MOD-FDM," Progress In Electromagnetics Research, Vol. 79, 339-352, 2008.
doi:10.2528/PIER07102802

13. Ha, M., K. Srinivasan, and M. Swaminathan, "Transient chippackage cosimulation of multiscale structures using the Laguerre-FDTD scheme," IEEE Trans. Adv. Packag., Vol. 32, No. 4, 816-830, Nov. 2009.

14. Duan, Y.-T., B. Chen, D.-G. Fang, and B.-H. Zhou, "Efficient implementation for 3-D Lagurre-based finite-difference time-domain method," IEEE Trans. Microwave Theory Tech., Vol. 59, No. 1, 56-64, Jan. 2011.
doi:10.1109/TMTT.2010.2091206

15. Jung, B. H., Y.-S. Chung, and T. K. Sarkar, "Time-domain EFIE, MFIE, and CFIE formulations using Laguerre polynomials as temporal basis functions for the analysis of transient scattering from arbitrary shaped conducting structures," Progress In Electromagnetics Research, Vol. 39, 1-45, 2003.
doi:10.2528/PIER02083001

16. Jung, B. H., T. K. Sarkar, and M. Salazar-Palma, "Time domain EFIE and MFIE formulations for analysis of transient electromagnetic scattering from 3-D dielectric objects ," Progress In Electromagnetics Research, Vol. 49, 113-142, 2004.
doi:10.2528/PIER04022304

17. Shi, Y. and J.-M. Jin, "A time-domain volume integral equation and its marching-on-in-degree solution for analysis of dispersive dielectric objects," IEEE Trans. Antennas Propag., Vol. 59, No. 3, 969-978, Mar. 2011.
doi:10.1109/TAP.2010.2103038

18. Keilson, J. and W. R. Nunn, "Laguerre transformation as a tool or the numerical solution of integral equations of convolution type," Appl. Math and Comput., Vol. 5, 313-359, 1979.
doi:10.1016/0096-3003(79)90021-3

19. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 1980.

20. Poularikas, A. D., The Transforms and Applications Handbook, 2nd Ed., CRC Press, 2000.

21. Yuan, M., A. De, T. K. Sarkar, J. Koh, and B. H. Jung, "Conditions for generation of stable and accurate hybrid TD-FD MoM solutions," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 6, 2552-2563, Jun. 2006.
doi:10.1109/TMTT.2006.875823

22. Rao, S. M., Time Domain Electromagnetics, Academic Press, 1999.

23. Kong, J. A., Electromagnetic Wave Theory, 2nd Ed., Vol. 3, John Wiley & Sons, Inc., 1990.