1. Marrocco, G., "Pervasive electromagnetics: Sensing paradigms by passive RFID technology ," IEEE Wireless Communications, Vol. 17, 2823-2827, 2010.
doi:10.1109/MWC.2010.5675773 Google Scholar
2. Dimitriou, A. G., A. Bletsas, and J. N. Sahalos, "On the design of passive RFID tags for ASK modulation," Proceedings of the 5th European Conference on Antennas and Propagation (EuCAP 2011), Rome, April 11-15, 2011. Google Scholar
3. Shaker, G., S. Safavi-Naeini, N. Sangary, and M. M. Tentzeris, "Inkjet printing of ultrawideband (UWB) antennas on paper-based substrates," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 111-114, 2011.
doi:10.1109/LAWP.2011.2106754 Google Scholar
4. Weng, M. H., C.-H. Kao, and Y.-C. Chang, "A compact dual-band bandpass filter with high band selectivity using cross-coupled asymmetric SIRs for WLANs," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2-3, 161-168, 2010.
doi:10.1163/156939310790735679 Google Scholar
5. Xue, J.-Y., S.-X. Gong, P.-F. Zhang, W. Wang, and F.-F. Zhang, "A new miniaturized fractal frequency selective surface with excellent angular stability," Progress In Electromagnetics Research Letters, Vol. 13, 131-138, 2010.
doi:10.2528/PIERL10010804 Google Scholar
6. Guo, C., H.-J. Sun, and X. Lv, "A novel dualband frequency selective surface with periodic cell perturbation," Progress In Electromagnetics Research B, Vol. 9, 137-149, 2008.
doi:10.2528/PIERB08071302 Google Scholar
7. Chen, J., S. Quegan, and X. Yin, "Calibration of spaceborne linearly polarized low frequency SAR using polarimetric selective radar calibrators," Progress In Electromagnetics Research, Vol. 114, 89-111, 2011. Google Scholar
8. Zhang, J.-C., Y.-Z. Yin, and J.-P. Ma, "Design of narrow band-pass frequency selective surfaces for millimeter wave applications," Progress In Electromagnetics Research, Vol. 96, 287-298, 2009.
doi:10.2528/PIER09081702 Google Scholar
9. Zhu, Y. Z., H. S. Song, and K. Guan, "Design of optimized selective quasi-elliptic filters," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1357-1366, 2009.
doi:10.1163/156939309789108507 Google Scholar
10. Karlsson, A., D. Sjoberg, and B. Widenberg, "Frequency selective structures with stochastic deviations," Progress In Electromagnetics Research, Vol. 74, 141-155, 2007.
doi:10.2528/PIER07042501 Google Scholar
11. Lin, X. Q., T. J. Cui, Y. Fan, and X. Liu, "Frequency selective surface designed using electric resonant structures in terahertz frequency bands ," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 21-29, 2009.
doi:10.1163/156939309787604724 Google Scholar
12. Zhang, J.-C., Y.-Z. Yin, and J.-P. Ma, "Frequency selective surfaces with fractal four legged elements," Progress In Electromagnetics Research Letters, Vol. 8, 1-8, 2009.
doi:10.2528/PIERL08112301 Google Scholar
13. Siddiqui, O. F. and O. M. Ramahi, "Frequency-selective energy tunneling in wire-loaded narrow waveguide channels," Progress In Electromagnetics Research Letters, Vol. 15, 153-161, 2010.
doi:10.2528/PIERL10031809 Google Scholar
14. Belyaev, B. A., A. A. Leksikov, A. M. Serzhantov, and V. V. Tyurnev, "Highly selective suspended stripline dual-mode filter," Progress In Electromagnetics Research Letters, Vol. 25, 57-66, 2011. Google Scholar
15. Kawakatsu, M. N., V. A. Dmitriev, and S. L. Prosvirnin, "Microwave frequency selective surfaces with high Q-factor resonance and polarization insensitivity," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2-3, 261-270, 2010.
doi:10.1163/156939310790735741 Google Scholar
16. Jiao, C.-Q., "Selective suppression of electromagnetic modes in a rectangular waveguide by using distributed wall losses," Progress In Electromagnetics Research Letters, Vol. 22, 119-128, 2011. Google Scholar
17. Islam, S., J. Stiens, G. Poesen, R. Vounckx, J. Peeters, I. Bogaert, D. De Zutter, and W. de Raedt, "Simulation and experimental verification of w-band finite frequency selective surfaces on infinite background with 3D full wave solver NSPWMLFMA," Progress In Electromagnetics Research, Vol. 101, 189-202, 2010.
doi:10.2528/PIER09122104 Google Scholar
18. Ucar, M. H. B., A. Sondas, and Y. E. Erdemli, "Switchable split-ring frequency selective," Progress In Electromagnetics Research B, Vol. 6, 65-79, 2008.
doi:10.2528/PIERB08031214 Google Scholar
19. Coombs, C. F., Printed Circuits Handbook, McGraw-Hill Professional, 1.3-3.29, 2001.
20. Shestopalov, V. P., A. A. Kirilenko, and L. A. Rud, Resonance Wave Scattering, Vol. 2, Waveguide Discontinuities, 1986 (in Russian).
21. Valagiannopoulos, C. A., "Rigorous analysis of a metallic circular post in a rectangular waveguide with step discontinuity of sidewalls," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 2007. Google Scholar
22. Valagiannopoulos, C. A. and N. K. Uzunoglu, "Green's function of a parallel plate waveguide with multiple abrupt changes of interwall distances," Radio Science, Vol. 44, 2009. Google Scholar
23. Valagiannopoulos, C. A., "Arbitrary currents on circular cylinder with inhomogeneous cladding and RCS optimization," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 665-680, 2007.
doi:10.1163/156939307780667337 Google Scholar
24. Valagiannopoulos, C. A., "Effect of cylindrical scatterer with arbitrary curvature on the features of a metamaterial slab antenna ," Progress In Electromagnetics Research, Vol. 71, 59-83, 2007.
doi:10.2528/PIER07021103 Google Scholar
25. Zhang, H.-W., X.-W. Zhao, Y. Zhang, D. G. Donoro, W. X. Zhao, and C. H. Liang, "Analysis of a large scale narrow-wall slotted waveguide array by parallel MoM out-of-core solver using the higher order basis functions," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 1953-1965, 2010. Google Scholar
26. Valagiannopoulos, C. A., "Single-series solution to the radiation of loop antenna in the presence of a conducting sphere," Progress In Electromagnetics Research, Vol. 71, 277-294, 2007.
doi:10.2528/PIER07030803 Google Scholar
27. Valagiannopoulos, C. A., "An overview of the Watson transformation presented through a simple example," Progress In Electromagnetics Research, Vol. 75, 137-152, 2007.
doi:10.2528/PIER07052502 Google Scholar
28. Park, G. H. and Y. B. Park, "Capacitance of asymmetric conductor-backed coplanar waveguides," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1721-1729, 2010. Google Scholar
29. Valagiannopoulos, C. A., "Closed-form solution to the scattering of a skew strip field by metallic pin in a slab," Progress In Electromagnetics Research, Vol. 79, 1-21, 2008.
doi:10.2528/PIER07092206 Google Scholar
30. Valagiannopoulos, C. A., "Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other," Progress In Electromagnetics Research B, Vol. 3, 23-34, 2008.
doi:10.2528/PIERB07112906 Google Scholar
31. Shen, W., W.-Y. Yin, X.-W. Sun, and J.-F. Mao, "Compact coplanar waveguide-incorporated substrate integrated waveguide (SIW) filter," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 871-879, 2010.
doi:10.1163/156939310791285164 Google Scholar
32. Valagiannopoulos, C. A., "On measuring the permittivity tensor of an anisotropic material from the transmission coefficients," Progress In Electromagnetics Research B, Vol. 9, 105-116, 2008.
doi:10.2528/PIERB08072005 Google Scholar
33. Valagiannopoulos, C. A., "A Novel methodology for estimating the permittivity of a specimen rod at low radio frequencies," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 631-640, 2010.
doi:10.1163/156939310791036331 Google Scholar
34. Khalilpour, J. and M. Hakkak, "Controllable waveguide bandstop filter using S-shaped ring resonators," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 587-596, 2010.
doi:10.1163/156939310791036458 Google Scholar
35. Valagiannopoulos, C. A., "On developing alternating voltage around a rotating circular ring under plane wave excitation in the presence of an eccentrically positioned metallic core ," Progress In Electromagnetics Research M, Vol. 12, 193-204, 2010.
doi:10.2528/PIERM10040405 Google Scholar
36. Valagiannopoulos, C. A., "Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders," Progress In Electromagnetics Research, Vol. 114, 51-66, 2011. Google Scholar
37. Zhang, H., S. Yim, T. Hong, and S. Tan, "Experimental investigation on flanged parallel-plate dielectric waveguide probe for detection of conductive inclusions in lossy dielectric medium," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 681-693, 2010.
doi:10.1163/156939310791036287 Google Scholar
38. Valagiannopoulos, C. A., "A signal coverage model for two neighboring islands of di®erent size," Progress In Electromagnetics Research M, Vol. 2, 115-130, 2008.
doi:10.2528/PIERM08040303 Google Scholar
39. Valagiannopoulos, C. A., "On examining the influence of a thin dielectric strip posed across the diameter of a penetrable radiating cylinder," Progress In Electromagnetics Research C, Vol. 3, 203-214, 2008.
doi:10.2528/PIERC08042906 Google Scholar
40. Valagiannopoulos, C. A. and C. R. Simovski, "Conversion of evanescent waves into propagating modes by passing through a metamaterial prism: An iterative approximation method ," Proceedings of the 5th European Conference on Antennas and Propagation (EuCAP 2011), Rome, April 11-15, 2011. Google Scholar
41. Orphanidis, S. J., Electromagnetic Waves and Antennas, freely available online at: http://eceweb1.rutgers.edu/»orfanidi/ewa, Vol. 13, 530-533, 2008.
42. Alù, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern," Physical Review B, Vol. 75, 155410, 2007.
doi:10.1103/PhysRevB.75.155410 Google Scholar
43. Valagiannopoulos, C. A. and N. K. Uzunoglu, "Scattering of ELF waves by underground formations because of night-day ionospheric ridge ," Radio Science, Vol. 42, RS6S32, 2007. Google Scholar
44. Valagiannopoulos, C. A., "Study of an electrically anisotropic cylinder excited magnetically by a straight strip line," Progress In Electromagnetics Research, Vol. 73, 297-325, 2007.
doi:10.2528/PIER07041203 Google Scholar