1. Zhou, H., T. Takenaka, J. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001 Google Scholar
2. Yu, J., M. Yuan, and Q. H. Liu, "A wideband half oval patch antenna for breast imaging," Progress In Electromagnetics Research, Vol. 98, 1-13, 2009.
doi:10.2528/PIER09090304 Google Scholar
3. Zhang, H., S. Y. Tan, and H. S. Tan, "A flanged parallel-plate waveguide probe for microwave imaging of tumors," Progress In Electromagnetics Research, Vol. 97, 45-60, 2009.
doi:10.2528/PIER09090901 Google Scholar
4. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On quantitative microwave tomography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
doi:10.2528/PIER09080604 Google Scholar
5. Chen, G. P. and Z. Q. Zhao, "Ultrasound tomography-guide TRM technique for breast tumor detecting in MITAT system," Journal of Electromagnetic Waves and Application, Vol. 24, No. 11--12, 1459-1471, 2010.
doi:10.1163/156939310792149650 Google Scholar
6. Vaupel, T. and T. F. Eibert, "Comparison and application of near-field ISAR imaging techniques for far-field radar cross section determination," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 144-151, 2006.
doi:10.1109/TAP.2005.861549 Google Scholar
7. Nicholson, K. J. and C. H.Wang, "Improved near-field radar cross-section measurement technique," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1103-1106, 2009.
doi:10.1109/LAWP.2009.2033951 Google Scholar
8. Tan, W.-X., Y.-P. Wang, W. Hong, Y.-R. Wu, N.-J. Li, C.-F. Hu, and L.-X. Zhang, "Circular SAR experiment for human body imaging," 1st Asian and Pacific Conference on.Synthetic Aperture Radar, 2007. Google Scholar
9. Tan, W., W. Hong, Y. Wang, and Y. Wu, "A novel spherical-wave three-dimensional imaging algorithm for microwave cylindrical scanning geometries," Progress In Electromagnetics Research, Vol. 111, 43-70, 2011. Google Scholar
10. Li, S. Y., H. J. Sun, B. C. Zhu, and R. Liu, "Two-dimensional NUFFT-based algorithm for fast near-field imaging," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 814-817, 2010.
doi:10.1109/LAWP.2010.2069550 Google Scholar
11. Park, J.-I. and K.-T. Kim, "A comparative study on isar imaging algorithms for radar target identification," Progress In Electromagnetics Research, Vol. 108, 155-175, 2010.
doi:10.2528/PIER10071901 Google Scholar
12. Broquetas, A., J. Palau, L. Jofre, and A. Cardama, "Spherical wave near-field imaging and radar cross-section measurement," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 5, 730-735, 1998.
doi:10.1109/8.668918 Google Scholar
13. Fortuny, J., "An efficient 3-D near-field ISAR algorithm," IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, No. 4, 1261-1270, 1998.
doi:10.1109/7.722713 Google Scholar
14. Soumekh, M., "Reconnaissance with slant plane circular SAR imaging," IEEE Transactions on Image Processing, Vol. 8, No. 8, 1252-1265, 1996.
doi:10.1109/83.506760 Google Scholar
15. Bryant, M. L., L. L. Gostin, and M. Soumekh, "3-D E-CSAR imaging of a T-72 tank and synthesis of its SAR reconstructions," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 1, 211-227, 2003.
doi:10.1109/TAES.2003.1188905 Google Scholar
16. Burki, J. and C. F. Barnes, "Slant plane CSAR processing using householder transform," IEEE Transactions on Image Processing, Vol. 17, No. 10, 1900-1907, 2009.
doi:10.1109/TIP.2008.2002161 Google Scholar
17. Lin, Y., W. Hong, W. Tan, and Y. Wu, "Extension of range migration algorithm to squint circular SAR imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 8, No. 4, 651-655, 2011.
doi:10.1109/LGRS.2010.2098843 Google Scholar
18. Knaell, K. K. and G. P. Cardillo, "Radar tomography for the generation of three-dimensional images," IEE Proceedings of Radar, Sonar and Navigation, Vol. 142, No. 2, 54-60, 1995.
doi:10.1049/ip-rsn:19951791 Google Scholar