1. Hong, J. S. and M. J. Lancaster, "Canonical microstrip filter using square open-loop resonators," IEE Electron. Lett., Vol. 31, No. 23, 2020-2022, Nov. 1995.
doi:10.1049/el:19951370 Google Scholar
2. Mao, R. J., X. H. Tang, L. Wang, and G. H. Du, "Miniaturized hexagonal stepped-impedance resonators and their applications to filters," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 2, 440-448, Feb. 2008.
doi:10.1109/TMTT.2007.914622 Google Scholar
3. Mo, S.-G., Z.-Y. Yu, and L. Zhang, "Compact dual-mode bandpass filters using hexagonal meander loop resonators," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1723-1732, 2009.
doi:10.1163/156939309789566941 Google Scholar
4. Mo, S.-G., Z.-Y. Yu, and L. Zhang, "Design of triple-mode bandpass filter using improved hexagonal loop resonator," Progress In Electromagnetics Research, Vol. 96, 117-125, 2009.
doi:10.2528/PIER09080304 Google Scholar
5. Dai, G.-L. and M.-Y. Xia, "An investigation of quarter-wavelength square-spiral resonator and its applications to miniaturized bandpass filters," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1303-1313, 2010.
doi:10.1163/156939310791958699 Google Scholar
6. Alhawari, A. R. H., A. Ismail, M. F. A. Rasid, R. S. A. R. Abdullah, B. K. Esfeh, and H. Adam, "Compact microstrip band-pass filter with sharp passband skirts using square spiral resonators and embedded-resonators," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5--6, 675-683, 2009.
doi:10.1163/156939309788019895 Google Scholar
7. Hong, J. S. and M. J. Lancaster, "Coupling of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 12, 2099-2109, Dec. 1996.
doi:10.1109/22.543968 Google Scholar
8. Hong, J. S., M. J. Lancaster, R. B. Greed, and D. Jedamzik, "On the development of superconducting microstrip filters for mobile communications applications," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 9, 1656-1663, Sep. 1999.
doi:10.1109/22.788606 Google Scholar
9. Fan, J.-W., C.-H. Liang, and X.-W. Dai, "Design of cross-coupled dual-band filter with equal-length split-ring resonators," Progress In Electromagnetics Research, Vol. 75, 285-293, 2007.
doi:10.2528/PIER07060904 Google Scholar
10. Wen, S. and L. Zhu, "Numerical synthesis design of coupled resonator filters," Progress In Electromagnetics Research, Vol. 92, 333-346, 2009.
doi:10.2528/PIER09041102 Google Scholar
11. Weng, M. H., C. H. Kao, and Y. C. Chang, "A compact dual-band bandpass filter with high band selectivity using cross-coupled asymmetric SIRs for WLANs," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2--3, 161-168, 2010.
doi:10.1163/156939310790735679 Google Scholar
12. Jiang, S. M., W.-T. Li, X. H. Wang, Q. Y. Song, and X.-W. Shi, "A novel method of designing cross-coupled filters through optimization," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14--15, 2011-2019, 2009.
doi:10.1163/156939309789932386 Google Scholar
13. Zhu, Y.-Z., H. S. Song, and K. Guan, "Design of optimized selective quasi-elliptic filters," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1357-1366, 2009.
doi:10.1163/156939309789108507 Google Scholar
14. Lee, J. and K. Sarabandi, "A synthesis method for dual-passband microwave filters," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 6, 1163-1170, Jun. 2007.
doi:10.1109/TMTT.2007.897712 Google Scholar
15. Athukorala, L., D. Budimir, and M. M. Potrebic, "Design of open-loop dual-mode microstrip filters," Progress In Electromagnetics Research Letters, Vol. 19, 179-185, 2010. Google Scholar
16. Lin, H.-J., X.-Q. Chen, X.-W. Shi, L. Chen, and C.-L. Li, "A dual passband filter using hybrid microstrip open loop resonators and coplanar waveguide slotline resonators," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 141-149, 2010.
doi:10.1163/156939310790322118 Google Scholar
17. Rebenaque, D. C., J. Pascual-García, F. Q. Pereira, J. L. Gomez-Tornero, and A. A. Melcon, "Novel implementation of transversal filters in multilayered microstrip technology," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1241-1253, 2010.
doi:10.1163/156939310791586179 Google Scholar
18. Abu-Hudrouss, A. M. and M. J. Lancaster, "Design of multiple-band microwave filters using cascaded filter elements," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2109-2118, 2009.
doi:10.1163/156939309790109225 Google Scholar
19. Lai, X., N. Wang, B. Wu, and C.-H. Liang, "Design of dual-band filter based on OLRR and DSIR," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2--3, 209-218, 2010.
doi:10.1163/156939310790735723 Google Scholar
20. Lin, H.-J., X.-Q. Chen, X.-W. Shi, L. Chen, and C.-L. Li, "A dual passband filter using hybrid microstrip open loop resonators and coplanar waveguide slotline resonators," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 141-149, 2010.
doi:10.1163/156939310790322118 Google Scholar
21. Wang, J.-P., L. Wang, Y.-X. Guo, Y. X. Wang, and D.-G. Fang, "Miniaturized dual-mode bandpass filter with controllable harmonic response for dual-band applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1525-1533, 2009.
doi:10.1163/156939309789476482 Google Scholar
22. Lee, J. and K. Sarabandi, "Design of triple-passband microwave filters using frequency transformations," IEEE Trans. Microwave Theory Tech., Vol. 56, No. 1, 187-193, Jun. 2008.
doi:10.1109/TMTT.2007.912206 Google Scholar
23. Wu, H.-W. and R.-Y. Yang, "Design of a triple-passband microstrip bandpass filter with compact sizes," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2333-2341, 2010.
doi:10.1163/156939310793675736 Google Scholar
24. Weng, R.-M. and P.-Y. Hsiao, "Double-layered quad-band bandpass filter for multi-band wireless systems," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2153-2161, 2009.
doi:10.1163/156939309790109324 Google Scholar
25. Du, Y. and B. Liu, "A numerical method for electromagnetic scattering from dielectric rough surfaces based on the stochastic second degree method," Progress In Electromagnetics Research, Vol. 97, 327-342, 2009.
doi:10.2528/PIER09092501 Google Scholar
26. Tian, J., Z.-Q. Lv, X.-W. Shi, L. Xu, and F. Wei, "An efficient approach for multifrontal algorithm to solve non-positive-definite finite element equations in electromagnetic problems," Progress In Electromagnetics Research, Vol. 95, 121-133, 2009.
doi:10.2528/PIER09070207 Google Scholar
27. Kusiek, A. and J. Mazur, "Analysis of scattering from arbitrary configuration of cylindrical objects using hybrid finite-difference mode-matching method," Progress In Electromagnetics Research, Vol. 97, 105-127, 2009.
doi:10.2528/PIER09072804 Google Scholar
28. Ebadi, S. and K. Forooraghi, "Green's function derivation of an annular waveguide for application in method of moment analysis of annular waveguide slot antennas," Progress In Electromagnetics Research, Vol. 89, 101-119, 2009.
doi:10.2528/PIER08121201 Google Scholar
29. Norgren, M. and B. L. G. Jonsso, "The capacitance of the circular parallel plate capacitor obtained by solving the Love integral equation using an analytic expansion of the kernel," Progress In Electromagnetics Research, Vol. 97, 357-372, 2009.
doi:10.2528/PIER09092503 Google Scholar
30. Zhang, G.-H., M. Y. Xia, and X.-M. Jiang, "Transient analysis of wire structures using time domain integral equation method with exact matrix elements," Progress In Electromagnetics Research, Vol. 92, 281-298, 2009.
doi:10.2528/PIER09032003 Google Scholar
31. Fan, Z. H., R.-S. Chen, H. Chen, D.-Z. Ding, "Weak form nonuniform fast fourier transform method for solving volume integral equations," Progress In Electromagnetics Research, Vol. 89, 275-289, 2009.
doi:10.2528/PIER08121308 Google Scholar
32. Chang, H.-W., Y.-H. Wu, S.-M. Lu, W.-C. Cheng, and M.-H. Sheng, "Field analysis of dielectric waveguide devices based on coupled transverse-mode integral equation-numerical investigation," Progress In Electromagnetics Research, Vol. 97, 159-176, 2009.
doi:10.2528/PIER09091402 Google Scholar
33. Miraftab, V. and R. R. Mansour, "Computer-aided tuning of microwave filters using fuzzy logic," IEEE Trans. Microwave Theory Tech., Vol. 50, 2781-2788, Dec. 2002.
doi:10.1109/TMTT.2002.805291 Google Scholar
34. Miraftab, V. and R. R. Mansour, "A robust fuzzy-logic technique for computer-aided diagnosis of microwave filters," IEEE Trans. Microwave Theory Tech., Vol. 52, 450-456, Jan. 2004.
doi:10.1109/TMTT.2003.820895 Google Scholar
35. Tayarani, M. and Y. Kami, "Qualitative analysis in engineering electromagnetic; an application to general transmission lines," IEIEC Transactions on Electronics, Vol. 84, No. 3, 364-375, Mar. 2001. Google Scholar
36. Guney, K. and N. Sarikaya, "Resonant frequency calculation for circular microstrip antennas with a dielectric cover using adaptive network-based fuzzy inference system optimized by various algorithms," Progress In Electromagnetics Research, Vol. 72, 279-306, 2007.
doi:10.2528/PIER07031302 Google Scholar
37. Guney, K. and N. Sarikaya, "Concurrent neuro-fuzzy systems for resonant frequency computation of rectangular, circular and triangular microstrip antennas," Progress In Electromagnetics Research, Vol. 84, 253-277, 2008.
doi:10.2528/PIER08070603 Google Scholar
38. Turkmen, M., S. Kaya, C. Yildiz, and K. Guney, "Adaptive neuro-fuzzy models for conventional coplanar waveguides," Progress In Electromagnetics Research B, Vol. 6, 93-107, 2008.
doi:10.2528/PIERB08031208 Google Scholar
39. Mohdeb, N. and M. R. Mekideche, "Determination of the relative magnetic permeability by using an adaptive neuro-fuzzy inference system and 2D-FEM," Progress In Electromagnetics Research B, Vol. 22, 237-255, 2010.
doi:10.2528/PIERB10050201 Google Scholar
40. Ostadzadeh, S. R., M. Soleimani, and M. Tayarani, "A fuzzy model for computing input impedance of two coupled dipole antennas in the echelon form," Progress In Electromagnetics Research, Vol. 78, 265-283, 2008.
doi:10.2528/PIER07091004 Google Scholar
41. Ostadzadeh, S. R., M. Tayarani, and M. Soleimani, "A fuzzy model for computing back-scattering response from linearly loaded dipole antenna in the frequency domain," Progress In Electromagnetics Research, Vol. 86, 229-242, 2008.
doi:10.2528/PIER08081301 Google Scholar
42. Dadgarnia, A. and A. A. Heidari, "A fast systematic approach for microstrip antenna design and optimization using ANFIS and GA," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2207-2221, 2010.
doi:10.1163/156939310793699037 Google Scholar
43. Kabir, H., Y. Wang, M. Yu, and Q.-J. Zhang, "High-dimensional neural-network technique and applications to microwave filter modeling," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 1, 145-156, Jan. 2010.
doi:10.1109/TMTT.2009.2036412 Google Scholar
44. Takagi, T. and M. Sugeno, "Fuzzy identification of systems and its application to modeling and control," IEEE Trans. On Systems, Man. and Cybernatics, Vol. 15, No. 1, 116-132, Jan./Feb. 1985. Google Scholar
45. Takagi, T. and M. Sugeno, "A fuzzy logic approach to qualitative modeling," IEEE Trans. On Fuzzy Systems, Vol. 1, No. 1, 1282-1285, Feb. 1993. Google Scholar
46. Shouraki, S. B. and N. Honda, "Recursive fuzzy modeling based on fuzzy interpolation," Journal of Advanced Computational Intelligence, Vol. 3, No. 2, 114-125, Apr. 1999. Google Scholar
47. Shouraki, S. B. and N. Honda, "Fuzzy interpretation of human intelligence," International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, Vol. 7, No. 4, 407-414, Aug. 1999.
doi:10.1142/S0218488599000362 Google Scholar
48. Rizzi, P. A., Microwave Engineering: Passive Circuits, Prentice-Hall, 1988.