1. Gibson, P. J., "The Vivaldi aerial," Proc. 9th Eur. Microwave Conf., No. 1, 101-105, 1979.
doi:10.1109/EUMA.1979.332681 Google Scholar
2. Chiappe, M. and G. Gragnani, "Vivaldi antennas for microwave imaging: Theoretical analysis and design considerations," IEEE Transactions on Instrumentation and Measurement, Vol. 55, No. 2, 1885-1891, 2006.
doi:10.1109/TIM.2006.884289 Google Scholar
3. Schantz, H., "Introduction to ultra-wideband antennas," IEEE Conference on Ultra Wideband Systems and Technologies, No. 3, 1-9, 2003.
doi:10.1109/UWBST.2003.1267792 Google Scholar
4. Ellis, T. J. and G. M. Rebeiz, "MM-wave tapered slot antennas on micromachined photonic bandgap dielectrics," IEEE MTT-S Int. Microwave Symp. Dig., No. 4, 1157-1160, 1996. Google Scholar
5. Lovat, G., et al. "Analysis of directive radiation from a line source in a metamaterial slab with low permittivity," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 5, 1017-1030, 2006.
doi:10.1109/TAP.2006.869925 Google Scholar
6. Zhou, H., et al. "A novel high-directivity microstrip patch antenna based on zero-index metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 8, No. 6, 538-541, 2009.
doi:10.1109/LAWP.2009.2018710 Google Scholar
7. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, No. 5, 295-328, 2005.
doi:10.2528/PIER04070701 Google Scholar
8. Yang, R., Y.-J. Xie, P.Wang, and L. Li, "Microstrip antennas with left-handed materials substrates," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1221-1233, 2006.
doi:10.1163/156939306777442908 Google Scholar
9. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603 Google Scholar
10. Wang, B. and K. Huang, "Shaping the radiation pattern with mu and epsilon-near-zero metamaterials," Progress In Electromagnetics Research, Vol. 106, 107-119, 2010.
doi:10.2528/PIER10060103 Google Scholar
11. Ma, Y., et al. "Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial," Applied Physics Letters, Vol. 94, No. 7, 2009. Google Scholar
12. Cheng, Q., et al. "Radiation of planar electromagnetic waves by line source in anisotropic metamaterials," Journal of Physics D: Applied Physics, Vol. 43, No. 8, 35406, 2010. Google Scholar
13. Zhou, B. and T. J. Cui, "Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials," IEEE Antennas and Wireless Propagation Letters, Vol. 10, No. 9, 2011. Google Scholar
14. Tang, W. X., H. Zhao, X. Zhou, J. Y. Chin, and T.-J. Cui, "Negative index material composed of meander line and SRRs," Progress In Electromagnetics Research B, Vol. 8, 103-114, 2008.
doi:10.2528/PIERB08051201 Google Scholar
15. Smith, D., et al. "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, No. 11, 195104, 2002.
doi:10.1103/PhysRevB.65.195104 Google Scholar
16. Bai, J., S. Shi, and D. W. Prather, "Modified compact antipodal Vivaldi antenna for 4--50-GHz UWB application," IEEE Trans. Microwave Theory Tech., Vol. 59, No. 12, 1051-1057, 2011.
doi:10.1109/TMTT.2011.2113970 Google Scholar