Vol. 120
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
FETD Computation of the Temperature Distribution Induced into a Human Eye by a Pulsed Laser
By
Progress In Electromagnetics Research, Vol. 120, 403-421, 2011
Abstract
In this paper we present the three-dimensional finite element time domain model of the human eye exposed to pulsed holmium: YAG laser radiation used in thermokeratoplasty procedure. The model is based on the Pennes' bioheat transfer equation and takes into account the focusing action of the lens. The absorption of laser energy inside the eye tissues is modeled using the Lambert-Beer's law. Model takes into account the pulse temporal profile. The maximum temperature values obtained from steady state and transient analysis are compared against those reported from other papers. Finally, sensitivity analysis of several parameters on the calculated temperature field is carried out.
Citation
Mario Cvetković, Dragan Poljak, and Andres Peratta, "FETD Computation of the Temperature Distribution Induced into a Human Eye by a Pulsed Laser," Progress In Electromagnetics Research, Vol. 120, 403-421, 2011.
doi:10.2528/PIER11080405
References

1. Niemz, M. H., Laser-Tissue Interactions: Fundamentals and Applications, 3rd Ed., Springer-Verlag, 2003.

2. Carroll, L. and T. R. Humphreys, "LASER-tissue interactions," Clin. in Dermatol., Vol. 24, 2-7, 2006.        Google Scholar

3. Thompson, K., Q. Ren, and J. Parel, "Therapeutic and diagnostic application of lasers in ophthalmology," Proceedings of the IEEE, Vol. 80, No. 6, 838-860, 1992.        Google Scholar

4. Taove, A. and M. Brodwin, "Computation of the electromagnetic fields and induced temperatures within a model of the microwave-irradiated human eye," IEEE Trans. on Microw. and Theory, Vol. 23, No. 11, 888-896, Jan. 1975.        Google Scholar

5. Emery, A., P. Kramar, A. Guy, and J. Lin, "Microwave induced temperature rises in rabbit eyes in cataract research," J. of Heat Transf., Vol. 97, 123-128, 1975.        Google Scholar

6. Scott, J., "A finite element model of heat transport in the human eye," Phys. Med. Biol., Vol. 33, No. 2, 227-241, 1988.        Google Scholar

7. Scott, J., "The computation of temperature rises in the human eye induced by infrared radiation," Phys. Med. Biol., Vol. 33, No. 2, 243-257, 1988.        Google Scholar

8. Lagendijk, J., "A mathematical model to calculate temperature distributions in human and rabbit eyes during hyperthermic treatment," Phys. Med. Biol., Vol. 27, No. 11, 1301-1311, 1982.        Google Scholar

9. Mainster, M. A., "Ophthalmic applications of infrared lasers --- Thermal considerations," Invest. Ophth. Vis. Sci., Vol. 18, No. 4, 414-420, Apr. 1979.        Google Scholar

10. Amara, E. H., "Numerical investigations on thermal effects of laser-ocular media interaction," Int. J. Heat and Mass Tran., Vol. 38, No. 13, 2479-2488, 1995.        Google Scholar

11. Sbirlea, G. and J. P. L'Huillier, "A powerful finite element for analysis of argon laser iridectomy: Influence of natural convection on the human eye," WIT Tr Biomed Health, Vol. 4, 67-79, Apr. 1997.        Google Scholar

12. Chua, K. J., J. C. Ho, S. K. Chou, and M. R. Islam, "On the study of the temperature distribution within a human eye subjected to a laser source," Int. Commun. in Heat and Mass Trans., Vol. 32, 1057-1065, 2005.        Google Scholar

13. Ng, E. Y. K., E. H. Ooi, and U. R. Archarya, "A comparative study between the two-dimensional and three-dimensional human eye models," Math. Comput. Model., Vol. 48, No. 5--6, 712-720, 2008.        Google Scholar

14. Narasimhan, A., K. Jha, and L. Gopal, "Transient simulations of heat transfer in human eye undergoing laser surgery," Int. Commun. in Heat and Mass Trans., Vol. 53, 482-490, Jan. 2010.        Google Scholar

15. Manns, F., D. Borja, J. M. Parel, W. Smiddy, and W. Culbertson, "Semianalytical thermal model for subablative laser heating of homogeneous nonperfused biological tissue: Application to laser thermokeratoplasty," J. Biomed. Opt., Vol. 8, No. 2, 288-297, Apr. 2003.        Google Scholar

16. Pustovalov, V., B. Jean, T. Bende, and A. Smetannikov, "Investigations and computer modeling of the optical and thermal processes of laser thermal keratoplasty," Laser Phys., Vol. 14, No. 10, 1334-1341, 2004.        Google Scholar

17. Podol'tsev, A. and G. Zheltov, "Photodestructive effect of IR laser radiation on the cornea," Opt. Spectrosc., Vol. 102, No. 1, 142-146, 2007.        Google Scholar

18. Ooi, E. H., W. T. Ang, and E. Y. K. Ng, "A boundary element model of the human eye undergoing laser thermokeratoplasty," Comput. Biol. Med., Vol. 38, 727-737, 2008.        Google Scholar

19. Esquenazi, S., V. Bui, and O. Bibas, "Surgical correction of hyperopia," Surv. Ophthalmol., Vol. 51, No. 4, 381-418, 2006.        Google Scholar

20. Pennes, H. H., "Analysis of tissue and arterial blood temperatures in the resting human forearm, 1948," J. Appl. Physiol., Vol. 85, No. 1, 5-34, Jul. 1998.        Google Scholar

21. Smerdon, D., "Anatomy of the eye and orbit," Curr. Anaesth. & Crit. Care, Vol. 11, No. 6, 286-292, Jan. 2000.        Google Scholar

22. DeMarco, S. C., G. Lazzi, W. Liu, J. D. Weiland, and M. S. Humayun, "Computed SAR and thermal elevation in a 0.25-mm 2-D model of the human eye and head in response to an implanted retinal stimulator --- Part I: Models and methods," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 9, 2274-2285, 2003.        Google Scholar

23. Makous, W. L. and J. D. Gould, "Effects of lasers on the human eye," IBM J. Res. and Dev., Vol. 12, No. 3, 257-271, 1968.        Google Scholar

24. Krauss, J., C. Puliafito, and R. Steinert, "Laser interactions with the cornea," Surv. Ophthalmol., Vol. 31, No. 1, 37-51, Jan. 1986.        Google Scholar

25. Cvetkovic, M., A. Peratta, and D. Poljak, "Thermal modelling of the human eye exposed to infrared radiation of 1064nm Nd:YAG and 2090nm Ho:YAG lasers," Wit Tr Biomed Health, Vol. 14, 221-231, 2009.        Google Scholar

26. Poljak, D., A. Peratta, and C. A. Brebbia, "The boundary element electromagnetic --- Thermal analysis of human exposure to base station antennas radiation," Eng. Anal. with Bound. Elem., Vol. 28, 763-770, Jan. 2004.        Google Scholar

27. Ibrahiem, A., C. Dale, W. Tabbara, and J. Wiart, "Analysis of the temperature increase linked to the power induced by RF source," Progress In Electromagnetics Research, Vol. 52, 23-46, 2005.        Google Scholar

28. Hirata, A., H. Sugiyama, and O. Fujiwara, "Estimation of core temperature elevation in humans and animals for whole-body averaged SAR," Progress In Electromagnetics Research, Vol. 99, 53-70, 2009.        Google Scholar

29. Ooi, E., W. Ang, and E. Y. K. Ng, "A boundary element model for investigating the effects of eye tumor on the temperature distribution inside the human eye," Comput. Biol. Med., Vol. 39, 667-677, Jan. 2009.        Google Scholar

30. Mahillo-Isla, R., M. J. Gonzáles-Morales, and C. Dehesa-Martínez, "Plane wave spectrum of 2D complex beams," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8--9, 1123-1131, 2009.        Google Scholar

31. Gonźales-Morales, M. J., R. Mahillo-Isla, E. Gago-Ribas, and C. Dehesa-Martínez, "3D complex beams in the spatial and the spectral domains," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1103-1112, 2010.        Google Scholar

32. Cember, H., Introduction to Health Physics, 3rd Ed., McGraw Hill, Inc., 1996.

33. Träger, F., Springer Handbook of Lasers and Optics, Springer Science + Business Media, 2007.

34. Cvetkovic, M., D. Cavka, D. Poljak, and A. Peratta, "3D FEM temperature distribution analysis of the human eye exposed to laser radiation," Proc. Biomed., 2009.        Google Scholar

35. Acharya, R. U., E. Y. K. Ng, and J. S. Suri, Image Modeling of the Human Eye, Vol. 11, 229-252, Artech House, Inc., 2008.

36. Ng, E. Y. K. and E. H. Ooi, "FEM simulation of the eye structure with bioheat analysis," Comput. Meth. Prog. Bio., Vol. 82, 268-276, 2006.        Google Scholar

37. Ooi, E. H., W. T. Ang, and E. Y. K. Ng, "Bioheat transfer in the human eye: A boundary element approach," Eng. Anal. eight Bound. Elem., Vol. 31, No. 6, 494-500, 2007.        Google Scholar

38. Ng, E. Y. K. and E. H. Ooi, "Ocular surface temperature: A 3D FEM prediction using bioheat equation," Comput. Biol. Med., Vol. 37, 829-835, 2007.        Google Scholar

39. Stringer, H. and J. Parr, "Shrinkage temperature of eye collagen,", Vol. 204, No. 4965, 1307-1307, Dec. 1964.        Google Scholar

40. Brinkmann, R., J. Kampmeier, U. Grotehusmann, A. Vogel, N. Koop, M. Asiyo-Vogel, and R. Birngruber, "Corneal collagen denaturation in laser thermokeratoplasty," P. Soc. Photo.-Opt. Ins., Vol. 2681, No. 56, 56-63, Jan. 1996.        Google Scholar

41. Cvetkovic, M., D. Poljak, and A. Peratta, "Thermal modelling of the human eye exposed to laser radiation," Proc. SoftCOM, Vol. 10, 16-20, 2008.        Google Scholar

42. Jansen, E. D., T. G. van Leeuwen, M. Motamedi, C. Borst, and A. J. Welch, "Temperature dependence of the absorption coefficient of water for midinfrared laser radiation," Laser Surg. Med., Vol. 14, No. 3, 258-268, 1994.        Google Scholar

43. Lange, B., T. Brendel, and G. Hüuttmann, "Temperature dependence of light absorption in water at holmium and thulium laser wavelengths," Appl. Optics, Vol. 41, No. 27, 5797-5803, Sep. 2002.        Google Scholar

44. Zhou, J., J. K. Chen, and Y. Zhang, "Simulation of laser-induced thermotherapy using a dual-reciprocity boundary element model with dynamic tissue properties," IEEE on Trans. Bio. Eng., Vol. 57, No. 2, 238-245, Jan. 2010.        Google Scholar

45. Jha, K. and A. Narasimhan, "Three-dimensional bio-heat transfer simulation of sequential and simultaneous retinal laser irradiation," Int. J. Therm. Sci., Vol. 50, No. 7, 1191-1198, 2011.        Google Scholar