1. Smith, P. H., Electronic Applications of the Smith Chart, NoblePublishing, 2000.
2. Wu, Y., H. Y. Huang, and Y. N. Liu, "An extended omnipotent Smith chart with active parameters," Microwave and Optical Microwave and Optical Technology Letters, Vol. 50, No. 4, 896-899, 2008.
doi:10.1002/mop.23229 Google Scholar
3. Wu, Y. and Y. Liu, "Standard Smith chart approach to solve exponential tapered nonuniform transmission line problems," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11--12, 1639-1646, 2008.
doi:10.1163/156939308786389997 Google Scholar
4. Roy, N. and V. K. Devabhaktuni, "A new computer aided LNA design approach targeting constant noise-figure and maximum gain," PIERS Online, Vol. 3, No. 8, 1321-1325, 2007.
doi:10.2529/PIERS070416143017 Google Scholar
5. Lindell, I. V., M. E. Valtonen, and A. H. Sihvola, "Theory of nonreciprocal and nonsymmetric uniform transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 2, 291-297, 1994.
doi:10.1109/22.275260 Google Scholar
6. Lindell, I. V. and A. H. Sihvola, "Duality transformation for nonreciprocal and nonsymmetric transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 1, 129-131, 1997.
doi:10.1109/22.552042 Google Scholar
7. Torrungrueng, D. and C. Thimaporn, "A generalized ZY Smith chart for solving nonreciprocal uniform transmission-line problems," Microwave and Optical Technology Letters, Vol. 40, No. 1, 57-61, 2004.
doi:10.1002/mop.11284 Google Scholar
8. Hosseini, F., M. Khalaj-Amir Hosseini, and M. Yazdani, "A miniaturized Wilkinson power divider using nonuniform transmission line," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 917-924, 2009.
doi:10.1163/156939309788355243 Google Scholar
9. Torrungrueng, D. and C. Thimaporn, "Application of the T-chart for solving exponentially tapered lossless nonuniform transmission-line problems," Microwave and Optical Technology Letters, Vol. 45, No. 5, 402-406, 2005.
doi:10.1002/mop.20836 Google Scholar
10. Pozar, D. M., Microwave Engineering, 3rd Ed., John Wiley & Sons, 2005.
11. Khalaj-amirhosseini, M., "Analysis of coupled nonuniform transmission lines using short exponential or linear sections," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 299-312, 2007.
doi:10.1163/156939307779367378 Google Scholar
12. Sanada, A., C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 2, 68-70, Nov. 2004.
doi:10.1109/LMWC.2003.822563 Google Scholar
13. Horii, Y., C. Caloz, and T. Itoh, "Super-compact multilayered left-handed transmission line and diplexer application," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1527-1534, Apr. 2005.
doi:10.1109/TMTT.2005.845189 Google Scholar
14. Antonini, G., "A general framework for the analysis of metamaterial transmission lines," Progress In Electromagnetics Research B, Vol. 20, 353-373, 2010.
doi:10.2528/PIERB10030601 Google Scholar
15. Wang, W., C. Liu, L. Yan, and K. Huang, "A novel power divider based on dual-composite right/left handed transmission line," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8--9, 1173-1180, 2009. Google Scholar
16. Mirzavand, R., B. Honarbakhsh, A. Abdipour, and A. Tavakoli, "Metamaterial-based phase shifters for ultra wide-band applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1489-1496, 2009.
doi:10.1163/156939309789476446 Google Scholar
17. Choi, J. and C. Seo, "High-efficiency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial," Progress In Electromagnetics Research, Vol. 106, 33-47, 2010.
doi:10.2528/PIER10050609 Google Scholar
18. Güne, F. and C. Bilgin, "A generalized design procedure for a microwave amplifier: A typical application example," Progress In Electromagnetics Research B, Vol. 10, 1-19, 2008. Google Scholar
19. Demirel, S., F. Gunes, and U. Ozkaya, "Design of an ultra-wideband, low-noise, amplifier using a single transistor: A typical application example," Progress In Electromagnetics Research B, Vol. 16, 371-387, 2009.
doi:10.2528/PIERB09062302 Google Scholar
20. Russo, I., L. Boccia, G. Amendola, and G. Di Massa, "Simplified design flow of quasi-optical slot amplifiers," Progress In Electromagnetics Research, Vol. 96, 347-359, 2009.
doi:10.2528/PIER09072807 Google Scholar
21. Yoon, J., H. Seo, I. Choi, and B. Kim, "Wideband LNA using a negative gm cell for improvement of linearity and noise figure," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5--6, 619-630, 2010.
doi:10.1163/156939310791036412 Google Scholar
22. Lee, M.-W., S.-H. Kam, Y.-S. Lee, and Y.-H. Jeong, "A highly efficient three-stage Doherty power amplifier with flat gain for WCDMA applications," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2537-2545, 2010.
doi:10.1163/156939310793675619 Google Scholar
23. Torrungrueng, D. and S. Lamultree, "Equivalent graphical solutions of terminated conjugately characteristic impedance transmission lines with non-negative and corresponding negative characteristic resistances," Progress In Electromagnetics Research, Vol. 92, 137-151, 2009.
doi:10.2528/PIER09031001 Google Scholar
24. Torrungrueng, D., Meta-Smith Charts and Their Potential Applications, Morgan and Claypool, 2010.
25. Gonzalez, G., Microwave Transistor Amplifiers, 2nd Ed., Prentice-Hall, 1997.
26. Silapunt, R. and D. Torrungrueng, "An analysis of two-port networks in the system of conjugately characteristic-impedance transmission lines (CCITLs)," Proc. of the 2005 EECON Conference, Phuket, Thailand, 2005.
27. Zappelli, L., "On the definition of the generalized scattering matrix of a lossless radial line," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 6, 1654-1662, 2004.
doi:10.1109/TMTT.2004.828470 Google Scholar
28. Silapunt, R. and D. Torrungrueng, "A comparison of two-port network in the CCITL system," IEEE AP-S International Symposium, 1197-1200, New Mexico, USA, 2006.
29. Heidari, A. A., M. Heyrani, and M. Nakhkash, "A dual-band circularly polarized stub loaded microstrip patch antenna for GPS applications," Progress In Electromagnetics Research, Vol. 92, 195-208, 2009.
doi:10.2528/PIER09032401 Google Scholar
30. Li, X., Y.-J. Yang, L. Yang, S.-X. Gong, T. Hong, X. Chen, Y.-J. Zhang, X. Tao, Y. Gao, K. Ma, and X.-L. Liu, "A novel unequal Wilkinson power divider for dual-band operation," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1012-1022, 2010. Google Scholar
31. Li, J. C., J. C. Nan, X. Y. Shan, and Q. F. Yan, "A novel modified dual-frequency Wilkinson power divider with open stubs and optional isolation," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2223-2235, 2010.
doi:10.1163/156939310793699163 Google Scholar
32. Silapunt, R. and D. Torrungrueng, "Stability considerations for the design of microwave transistor amplifiers in the CCITL system," Proc. of the 2006 ECTI-CON, 115-118, 2006. Google Scholar
33. Silapunt, R. and D. Torrungrueng, "Stability considerations of potentially unstable broadband microwave transistor amplifiers in the CCITL system," Mediterranean Microwave Symposium, 261-264, Budapest, Hungary, 2006.