Vol. 120
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-09-20
Theoretical Study of Microwave Transistor Amplifier Design in the Conjugately Characteristic-Impedance Transmission Line (Ccitl) System Using a Bilinear Transformation Approach
By
Progress In Electromagnetics Research, Vol. 120, 309-326, 2011
Abstract
Conjugately characteristic-impedance transmission lines (CCITLs) are a class of transmission lines possessing conjugately characteristic impedances (Z0±) for waves propagating in the opposite direction. A typical Z0 uniform transmission line is a special case of CCITLs whose argument of Z0± is equal to 0o. This paper aims to generalize the CCITL system by demonstrating a theoretical study of CCITLs and their applications in the microwave transistor amplifier design. It is found that the bilinear transformation plays an important role in transforming circles in the reflection coefficient Г0-plane in the Z0 system to the Г-plane in the CCITL system. In addition, Meta-Smith charts, a graphical tool developed for solving problems in the CCITL system, are employed to design matching networks to achieve desired amplifier properties. Results show that stability regions on Meta-Smith charts can be determined, and source and load reflection coefficients can be selected properly to obtain desired operating power gain. In addition, an example shows that Meta-Smith charts offer a simple approach for matching network design using open-circuited single-stub shunt tuners.
Citation
Rardchawadee Silapunt Danai Torrungrueng , "Theoretical Study of Microwave Transistor Amplifier Design in the Conjugately Characteristic-Impedance Transmission Line (Ccitl) System Using a Bilinear Transformation Approach," Progress In Electromagnetics Research, Vol. 120, 309-326, 2011.
doi:10.2528/PIER11080504
http://www.jpier.org/PIER/pier.php?paper=11080504
References

1. Smith, P. H., Electronic Applications of the Smith Chart, NoblePublishing, Georgia, 2000.

2. Wu, Y., H. Y. Huang, and Y. N. Liu, "An extended omnipotent Smith chart with active parameters," Microwave and Optical Microwave and Optical Technology Letters, Vol. 50, No. 4, 896-899, 2008.
doi:10.1002/mop.23229

3. Wu, Y. and Y. Liu, "Standard Smith chart approach to solve exponential tapered nonuniform transmission line problems," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11--12, 1639-1646, 2008.
doi:10.1163/156939308786389997

4. Roy, N. and V. K. Devabhaktuni, "A new computer aided LNA design approach targeting constant noise-figure and maximum gain," PIERS Online, Vol. 3, No. 8, 1321-1325, 2007.
doi:10.2529/PIERS070416143017

5. Lindell, I. V., M. E. Valtonen, and A. H. Sihvola, "Theory of nonreciprocal and nonsymmetric uniform transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 2, 291-297, 1994.
doi:10.1109/22.275260

6. Lindell, I. V. and A. H. Sihvola, "Duality transformation for nonreciprocal and nonsymmetric transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 1, 129-131, 1997.
doi:10.1109/22.552042

7. Torrungrueng, D. and C. Thimaporn, "A generalized ZY Smith chart for solving nonreciprocal uniform transmission-line problems," Microwave and Optical Technology Letters, Vol. 40, No. 1, 57-61, 2004.
doi:10.1002/mop.11284

8. Hosseini, F., M. Khalaj-Amir Hosseini, and M. Yazdani, "A miniaturized Wilkinson power divider using nonuniform transmission line," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 917-924, 2009.
doi:10.1163/156939309788355243

9. Torrungrueng, D. and C. Thimaporn, "Application of the T-chart for solving exponentially tapered lossless nonuniform transmission-line problems," Microwave and Optical Technology Letters, Vol. 45, No. 5, 402-406, 2005.
doi:10.1002/mop.20836

10. Pozar, D. M., Microwave Engineering, 3rd Ed., John Wiley & Sons, New Jersey, 2005.

11. Khalaj-amirhosseini, M., "Analysis of coupled nonuniform transmission lines using short exponential or linear sections," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 299-312, 2007.
doi:10.1163/156939307779367378

12. Sanada, A., C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 2, 68-70, Nov. 2004.
doi:10.1109/LMWC.2003.822563

13. Horii, Y., C. Caloz, and T. Itoh, "Super-compact multilayered left-handed transmission line and diplexer application," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1527-1534, Apr. 2005.
doi:10.1109/TMTT.2005.845189

14. Antonini, G., "A general framework for the analysis of metamaterial transmission lines," Progress In Electromagnetics Research B, Vol. 20, 353-373, 2010.
doi:10.2528/PIERB10030601

15. Wang, W., C. Liu, L. Yan, and K. Huang, "A novel power divider based on dual-composite right/left handed transmission line," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8--9, 1173-1180, 2009.

16. Mirzavand, R., B. Honarbakhsh, A. Abdipour, and A. Tavakoli, "Metamaterial-based phase shifters for ultra wide-band applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1489-1496, 2009.
doi:10.1163/156939309789476446

17. Choi, J. and C. Seo, "High-efficiency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial," Progress In Electromagnetics Research, Vol. 106, 33-47, 2010.
doi:10.2528/PIER10050609

18. Güne, F. and C. Bilgin, "A generalized design procedure for a microwave amplifier: A typical application example," Progress In Electromagnetics Research B, Vol. 10, 1-19, 2008.

19. Demirel, S., F. Gunes, and U. Ozkaya, "Design of an ultra-wideband, low-noise, amplifier using a single transistor: A typical application example," Progress In Electromagnetics Research B, Vol. 16, 371-387, 2009.
doi:10.2528/PIERB09062302

20. Russo, I., L. Boccia, G. Amendola, and G. Di Massa, "Simplified design flow of quasi-optical slot amplifiers," Progress In Electromagnetics Research, Vol. 96, 347-359, 2009.
doi:10.2528/PIER09072807

21. Yoon, J., H. Seo, I. Choi, and B. Kim, "Wideband LNA using a negative gm cell for improvement of linearity and noise figure," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5--6, 619-630, 2010.
doi:10.1163/156939310791036412

22. Lee, M.-W., S.-H. Kam, Y.-S. Lee, and Y.-H. Jeong, "A highly efficient three-stage Doherty power amplifier with flat gain for WCDMA applications," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2537-2545, 2010.
doi:10.1163/156939310793675619

23. Torrungrueng, D. and S. Lamultree, "Equivalent graphical solutions of terminated conjugately characteristic impedance transmission lines with non-negative and corresponding negative characteristic resistances," Progress In Electromagnetics Research, Vol. 92, 137-151, 2009.
doi:10.2528/PIER09031001

24. Torrungrueng, D., Meta-Smith Charts and Their Potential Applications, Morgan and Claypool, California, 2010.

25. Gonzalez, G., Microwave Transistor Amplifiers, 2nd Ed., Prentice-Hall, New Jersey, 1997.

26. Silapunt, R. and D. Torrungrueng, An analysis of two-port networks in the system of conjugately characteristic-impedance transmission lines (CCITLs), Proc. of the 2005 EECON Conference, Phuket, Thailand, 2005.

27. Zappelli, L., "On the definition of the generalized scattering matrix of a lossless radial line," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 6, 1654-1662, 2004.
doi:10.1109/TMTT.2004.828470

28. Silapunt, R. and D. Torrungrueng, A comparison of two-port network in the CCITL system, IEEE AP-S International Symposium, 1197-1200, New Mexico, USA, 2006.

29. Heidari, A. A., M. Heyrani, and M. Nakhkash, "A dual-band circularly polarized stub loaded microstrip patch antenna for GPS applications," Progress In Electromagnetics Research, Vol. 92, 195-208, 2009.
doi:10.2528/PIER09032401

30. Li, X., Y.-J. Yang, L. Yang, S.-X. Gong, T. Hong, X. Chen, Y.-J. Zhang, X. Tao, Y. Gao, K. Ma, and X.-L. Liu, "A novel unequal Wilkinson power divider for dual-band operation," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1012-1022, 2010.

31. Li, J. C., J. C. Nan, X. Y. Shan, and Q. F. Yan, "A novel modified dual-frequency Wilkinson power divider with open stubs and optional isolation," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2223-2235, 2010.
doi:10.1163/156939310793699163

32. Silapunt, R. and D. Torrungrueng, "Stability considerations for the design of microwave transistor amplifiers in the CCITL system," Proc. of the 2006 ECTI-CON, 115-118, 2006.

33. Silapunt, R. and D. Torrungrueng, Stability considerations of potentially unstable broadband microwave transistor amplifiers in the CCITL system, Mediterranean Microwave Symposium, 261-264, Budapest, Hungary, 2006.