1. Arvas, E., A. Rahhalarabi, U. Pekel, et al. "Electromagnetic transmission through a small radome of arbitrary shape," IEE Proceedings-H Microwaves, Antennas and Propagation, Vol. 137, No. 6, 401-405, 1990.
doi:10.1049/ip-h-2.1990.0072 Google Scholar
2. Povinelli, M. J. and J. D'Angelo, "Finite element analysis of large wavelength antenna radome problems for leading edge and radar phased arrays," IEEE Transactions on Magnetics, Vol. 27, No. 5, 4299-4302, 1991.
doi:10.1109/20.105052 Google Scholar
3. Nie, X.-C., N. Yuan, L.-W. Li, T. S. Yeo, and Y.-B. Gan, "Fast analysis of electromagnetic transmission through arbitrary shaped airborne radomes using precorrected-FFT method," Progress In Electromagnetics Research, Vol. 54, 37-59, 2005.
doi:10.2528/PIER04100601 Google Scholar
4. Lee, H.-S. and H. Park, "Prediction of radome bore-sight errors using a projected image of source distributions," Progress In Electromagnetics Research, Vol. 92, 181-194, 2009.
doi:10.2528/PIER09033105 Google Scholar
5. Paris, D., "Computer-aided radome analysis," IEEE Trans. Antennas Propag., Vol. 18, No. 1, 7-15, 1970.
doi:10.1109/TAP.1970.1139614 Google Scholar
6. Kozakoff, D. J., Analysis of Radome-enclosed Antennas, Artech House, 1997.
7. Meng, H.-F., W.-B. Dou, T.-T. Chen, et al. "Analysis of radome using aperture integration-surface integration method with modified transmission coefficient," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 30, No. 2, 199-210, 2009.
doi:10.1007/s10762-008-9438-6 Google Scholar
8. Hu, B., X.-W. Xu, M. He, and Y. Zheng, "More accurate hybrid PO-MoM analysis for an electrically large antenna-radome structure," Progress In Electromagnetics Research, Vol. 92, 255-265, 2009.
doi:10.2528/PIER09022301 Google Scholar
9. Meng, H.-F. and W.-B. Dou, "A hybrid method for the analysis of radome-enclosed horn antenna," Progress In Electromagnetics Research, Vol. 90, 219-233, 2009.
doi:10.2528/PIER08122502 Google Scholar
10. Nie, X.-C., Y.-B. Gan, N. Yuan, C.-F. Wang, and L.-W. Li, "An efficient hybrid method for analysis of slot arrays enclosed by a large radome," Journal of Electromagnetic Waves Applications, Vol. 20, No. 2, 249-264, 2006.
doi:10.1163/156939306775777215 Google Scholar
11. Lu, C.-C., "A fast algorithm based on volume integral equation for analysis of arbitrarily shaped dielectric radomes," IEEE Trans. Antennas Propag., Vol. 51, No. 3, 606-612, 2003.
doi:10.1109/TAP.2003.809823 Google Scholar
12. Oğuzer, T. and A. Altintas, "Analysis of the nonconcentric reflector antenna-in-radome system by the iterative reflector antenna and radome interaction," Journal of Electromagnetic Waves Applications, Vol. 21, No. 1, 57-70, 2007.
doi:10.1163/156939307779391696 Google Scholar
13. Sukharevsky, I. V., S. E. Vazhinsky, and I. O. Sukharevsky, "3-D radome-enclosed aperture antenna analyses and far-side radiation," IEEE Trans. Antennas Propag., Vol. 58, No. 9, 2843-2849, 2010.
doi:10.1109/TAP.2010.2052548 Google Scholar
14. Sukharevsky, O. I. and V. A. Vasilets, "Scattering of reflector antenna with conic dielectric radome," Progress In Electromagnetics Research B, Vol. 4, 159-169, 2008.
doi:10.2528/PIERB08011404 Google Scholar
15. Sukharevsky, O. I., V. A. Vasilets, S. V. Kukobko, et al. "The electromagnetic wave scattering by aerial and ground radar objects," Kharkov, Ukraine, KUAF, 2009.
16. Greengard, L. and V. Rokhlin, "A fast algorithm for particle simulation," J. Comput. Phys., Vol. 73, 325-348, 1987.
doi:10.1016/0021-9991(87)90140-9 Google Scholar
17. Rokhlin, V., "Rapid solution of integral equations of scattering theory in two dimensions," J. Comput. Phys., Vol. 86, 414-439, Feb. 1990.
doi:10.1016/0021-9991(90)90107-C Google Scholar
18. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Trans. Antennas Propagat. Mag., Vol. 35, 7-12, Jun. 1993.
doi:10.1109/74.250128 Google Scholar
19. Cui, T.-J. and W.-C. Chew, Fast Algorithms in Computational Electromagnetics, Artech House, INC, Oct. 2003.
20. Chen, F., Q. Shen, and L. Zhang, "Electromagnetic optimal design and preparation of broadband ceramic radome material with graded porous structure," Progress In Electromagnetics Research, Vol. 105, 445-461, 2010.
doi:10.2528/PIER10012005 Google Scholar
21. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855 Google Scholar
22. Gurel, L., O. Ergul, A. Unal, and T. Malas, "Fast and accurate analysis of large metamaterial structures using the multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 95, 179-198, 2009.
doi:10.2528/PIER09060106 Google Scholar
23. Eibert, T. F., Ismatullah, E. Kaliyaperumal, and C. H. Schmidt, "Inverse equivalent surface current method with hierarchical higher order basis functions, full probe correction and multi-level fast multipole acceleration," Progress In Electromagnetics Research, Vol. 106, 377-394, 2010.
doi:10.2528/PIER10061604 Google Scholar
24. Yang, M.-L. and X.-Q. Sheng, "Parallel high-order FE-BI-MLFMA for scattering by large and deep coated cavities loaded with obstacles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1813-1823, 2009.
doi:10.1163/156939309789566932 Google Scholar