Vol. 121
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-10-13
Evolution and Collapse of a Lorentz Beam in Kerr Medium
By
Progress In Electromagnetics Research, Vol. 121, 39-52, 2011
Abstract
The effect of Kerr nonlinearity on a Lorentz beam is investigated by using the nonlinear Schrődinger (NLS) equation. Based on the variational method, the evolution of a Lorentz beam in a Kerr medium is demonstrated and the critical collapse powers of the Lorentz beam are derived. Numerical simulations of the propagation of a Lorentz beam in a Kerr medium show that the beam becomes quasi-circular in a very short distance. Although the beam width of the Lorentz beam broadens, the central part of the beam give rise to a partial collapse.
Citation
Rui Pin Chen, and Chong Heng Raymond Ooi, "Evolution and Collapse of a Lorentz Beam in Kerr Medium," Progress In Electromagnetics Research, Vol. 121, 39-52, 2011.
doi:10.2528/PIER11081712
References

1. Gawhary, O. E. and S. Severini, "Lorentz beams and symmetry properties in paraxial optics," J. Opt. A, Pure Appl. Opt., Vol. 8, 409-414, 2006.        Google Scholar

2. Naqwi, A. and F. Durst, "Focusing of diode laser beams: A simple mathematical model," Appl. Opt., Vol. 29, 1780-1785, 1990.        Google Scholar

3. Dumke, W. P., "The angular beam divergence in double-heterojunction lasers with very thin active regions," J. Quantum Electron., Vol. 11, 400-402, 1975.        Google Scholar

4. Zhou, G., "Nonparaxial propagation of a Lorentz-Gauss beam," J. Opt. Soc. Am. A, Vol. 25, 2594-2599, 2008.        Google Scholar

5. Zhou, G., "Propagation of a partially coherent Lorentz-Gauss beam through a paraxial ABCD optical system," Opt. Express, Vol. 18, 4637-4643, 2010.        Google Scholar

6. Jiang, Y., K. Huang, and X. Lu, "Radiation force of highly focused Lorentz-Gauss beams on a Rayleigh particle," Opt. Express, Vol. 19, 9708-9713, 2011.        Google Scholar

7. Biswas, A., "Temporal-soliton solution of the complex Ginzburg-Landau equation with power law nonlinearity," Progress In Electromagnetics Research, Vol. 96, 1-7, 2009.        Google Scholar

8. Mitatha, S., "Dark soliton behaviors within the nonlinear micro and nanoring resonators and applications," Progress In Electromagnetics Research, Vol. 99, 383-404, 2009.        Google Scholar

9. Gharakhili, F. G., M. Shahabadi, and M. Hakkak, "Bright and dark soliton generation in a left-handed nonlinear transmission line with series nonlinear capacitors," Progress In Electromagnetics Research, Vol. 96, 237-249, 2009.        Google Scholar

10. Khalique, C. M. and A. Biswas, "Optical solitons with parabolic and dual-power nonlinearity via lie symmetry analysis," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 963-973, 2009.        Google Scholar

11. Gross, B. and J. T. Manassah, "Numerical solution for the propagation of elliptic Gaussian beam in a Kerr medium," Phys. Lett. A, Vol. 169, 371-378, 1992.        Google Scholar

12. Barthelemy, A., C. Froehly, S. Maneuf, and E Reynaud, "Experimental observation of beams' self-deflection appearing with two-dimensional spatial soliton propagation in bulk Kerr material," Opt. Lett., Vol. 17, 844-846, 1992.        Google Scholar

13. Crosignani, B. and P. D. Porto, "Nonlinear propagation in Kerr media of beams with unequal transverse widths," Opt. Lett., Vol. 18, 1394-1396, 1993.        Google Scholar

14. Biswas, A., R. Kohl, M. E. Edwards, and E. Zerrad, "Soliton parameter dynamics in a non-Kerr law media," Progress In Electromagnetics Research C, Vol. 1, 1-35, 2008.        Google Scholar

15. Xu, J., W.-X. Wang, L.-N. Yue, Y.-B. Gong, and Y.-Y. Wei, "Electromagnetic wave propagation in an elliptical chiroferrite waveguide," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 2010-2030, 2009.        Google Scholar

16. Topa, A. L., C. R. Paiva, and A. M. Barbosa, "Electromagnetic wave propagation in chiral H-guides," Progress In Electromagnetics Research, Vol. 103, 285-303, 2010.        Google Scholar

17. Choudhury, P. K. and W. K. Soon, "TE mode propagation through tapered core liquid crystal optical fibers," Progress In Electromagnetics Research, Vol. 104, 449-463, 2010.        Google Scholar

18. Wei, H.-Y., Z.-S. Wu, and Q. Ma, "Log-amplitude variance of laser beam propagation on the slant path through the turbulent atmosphere," Progress In Electromagnetics Research, Vol. 108, 277-291, 2010.        Google Scholar

19. Costa-Quintana, J. and F. Lopez-Aguilar, "Propagation of electromagnetic waves in material media with magnetic monopoles," Progress In Electromagnetics Research, Vol. 110, 267-295, 2010.        Google Scholar

20. Apostol, M. and G. Vaman, "Plasmons and diffraction of an electromagnetic plane wave by a metallic sphere," Progress In Electromagnetics Research, Vol. 98, 97-118, 2009.        Google Scholar

21. Cao, P., X. Zhang, L. Cheng, and Q. Meng, "Far field imaging research based on multilayer positive- and negative-refractive-index media under off-axis illumination," Progress In Electromagnetics Research, Vol. 98, 283-298, 2009.        Google Scholar

22. Aberg, I., "High-frequency switching and Kerr effect-nonliear problems solved with nonstationary time domain techniques," Progress In Electromagnetics Research, Vol. 17, 185-235, 1997.        Google Scholar

23. Zamani, A. K. and M. Shahabadi, "Multiple-scale analysis of plane wave refraction at a dielectric slab with Kerr-type nonlinearity ," Progress In Electromagnetics Research, Vol. 56, 81-92, 2006.        Google Scholar

24. Konar, S. and A. Biswas, "Intra-channel collision of Kerr law optical solitons," Progress In Electromagnetics Research, Vol. 53, 55-67, 2005.        Google Scholar

25. Benson, T. M. and P. C. Kendall, "Variational techniques including effective and weighted index methods," Progress In Electromagnetics Research, Vol. 10, 1-40, 1995.        Google Scholar

26. Green, P. D., D. Milovic, D. A. Lott, and A. Biswas, "Optical solitons with higher order dispersion by semi-inverse variational principle," Progress In Electromagnetics Research, Vol. 102, 337-350, 2010.        Google Scholar

27. Anderson, D. and M. Bonnedal, "Variational approach to nonlinear self-focusing of Gaussian laser beams," Phys. Fluids, Vol. 22, 105-109, 1979.        Google Scholar

28. Anderson, D., "Variational approach to nonlinear pulse propagation in optical fibers," Phys. Rev. A, Vol. 27, 3135-3145, 1983.        Google Scholar

29. Malomed, B., "Variational methods in nonlinear fiber optics and related fields," Prog. Opt., Vol. 43, 70-191, 2002.        Google Scholar

30. Pérez-Garcia, V. M., P. Torres, and G. D. Montesinos, "The method of moments for nonlinear Schrödinger equations: Theory and applications," SIAM J. Appl. Math., Vol. 67, 990-1015, 2007.        Google Scholar

31. Pérez-Garcia, V. M., "Self-similar solutions and collective coordinate methods for nonlinear SchrÄodinger equations," Phys. D, Vol. 191, 211-218, 2004.        Google Scholar

32. Vlasov, S. N., V. A. Petrishchev, and V. I. Talanov, "Averaged description of wave beams in linear and nonlinear media (the method of moments)," Radio. Quan. Electron., Vol. 14, 1062-1070, 1971.        Google Scholar

33. Fibich, G. and G. Papanicolau, "Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension," SIAM J. Appl. Math., Vol. 60, 183-240, 1999.        Google Scholar

34. Vlasov, S. N., S. N. Gurbatov, and L. V. Piskunov, "Self-focusing of wave beams having an elliptical cross section," Radiofizika, Vol. 17, 1805-1811, 1974.        Google Scholar

35. Johannisson, P., D. Anderson, M. Lisak, and M. Marklund, "Nonlinear Bessel beams," Opt. Commun., Vol. 222, 107-115, 2003.        Google Scholar

36. Chen, R. P., C. F. Yin, X. X. Chu, and H. Wang, "Effect of kerr nonlinearity on an Airy beam," Phys. Rev. A, Vol. 82, 043832, 2010.        Google Scholar

37. Chen, R. P., Y. Z. Ni, and X. X. Chu, "Propagation of a cos-Gaussian beam in a kerr medium," Opt. Laser Tech., Vol. 43, 483-487, 2011.        Google Scholar

38. Grow, T. D., A. A. Ishaaya, L. T. Vuong, A. L. Gaeta, N. Gavish, and G. Fibich, "Collapse dynamics of super-Gaussian beams," Opt. Express, Vol. 14, 5468-5475, 2006.        Google Scholar

39. Moll, K. D., A. L. Gaeta, and G. Fibich, "Self-similar optical wave collapse: Observation of the Townes profile," Phys. Rew. Lett., Vol. 90, 203902, 2003.        Google Scholar

40. Feit, M. D. and J. A. Fleck, "Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams," J. Opt. Soc. Am. B, Vol. 5, 633-640, 1988.        Google Scholar

41. Fibich, G. and B. Ilan, "Self-focusing of elliptic beams: An example of the failure of the aberrationless approximation," J. Opt. Soc. Am. B, Vol. 17, 1749-1758, 2000.        Google Scholar

42. Fibich, G. and A. L. Gaeta, "Critical power for self-focusing in bulk media and in hollow waveguides," Opt. Lett., Vol. 25, 335-337, 2000.        Google Scholar