Vol. 121
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-10-26
Integral-Equation Analysis of Frequency Selective Surfaces Using Ewald Transformation and Lattice Symmetry
By
Progress In Electromagnetics Research, Vol. 121, 249-269, 2011
Abstract
In this paper, we present the space-domain integral-equation method for the analysis of frequency selective surfaces (FSS), consisting of an array of periodic metallic patches or a metal screens perforated periodically with arbitrarily shaped apertures. The computation of the spatial domain Green's function is accelerated by the Ewald transformation. The geometric model is simplified by the lattice symmetry, so that the unknowns are greatly reduced. Time of filling MOM matrix and solving linear system is dramatically reduced. Our technique shows much higher efficiency when compared with the available commercial software and the existing methods published.
Citation
Jianxun Su Xiao-Wen Xu Mang He Kang Zhang , "Integral-Equation Analysis of Frequency Selective Surfaces Using Ewald Transformation and Lattice Symmetry," Progress In Electromagnetics Research, Vol. 121, 249-269, 2011.
doi:10.2528/PIER11081902
http://www.jpier.org/PIER/pier.php?paper=11081902
References

1. Mittra, R., C. H. Chan, and T. Cwik, Techniques for analyzing frequency selective surfaces --- A review, Proc. IEEE, Vol. 76, No. 12, 1593-1615, Dec. 1988.

2. Duan, Z., B.-I. Wu, S. Xi, H. Chen, and M. Chen, "Research progress in reversed cherenkov radiation in double-negative metamaterials," Progress In Electromagnetics Research, Vol. 90, 75-87, 2009.

3. Catedra, M. F. and R. P. Torres, "A scheme to analyze scattering from flat metallic periodic structures using the conjugate gradient and the fast fourier transform method," Progress In Electromagnetics Research, Vol. 4, 315-343, 1991.

4. Chen, C.-C., "Diffraction of electromagnetic waves by a conducting screen perforated periodically with circular holes," IEEE Trans. Microw. Theory Tech., Vol. 19, No. 5, 475-481, May 1971.

5. Wu, T. K., "Frequency Selective Surface and Grid Array," Wiley, , New York, 1995.

6. Rao, S. M., D. R. Wilton, A. W. Glisson, "Electromagnetic scattering by surface of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-411, 1982.

7. Collin, R. E., Field Theory of Guided Waves, IEEE Press, New York, 1991.

8. Collin, R. E. and F. J. Zucker, Antenna Theory, Ch. 19 and 20, Mc-Graw-Hill, New York, 1969.

9. Jorgenson, R. E. and R. Mittra, "Efficient calculation of the free-space periodic Green's function," IEEE Trans. Antennas Propag., Vol. 38, No. 5, 633-642, May 1990.

10. Singh, S., W. F. Richards, J. R. Zinecker, and D. R. Wilton, "Accelerating the convergence of series representing the free periodic Green's function," IEEE Trans. Antennas Propag., Vol. 38, No. 12, 1958-1962, Dec. 1990.

11. Singh, S. and R. Singh, "On the use of ρ-algorithm in series acceleration," IEEE Trans. Antennas Propag., Vol. 39, No. 10, 1514-1517, Oct. 1991.

12. Ewald, P. P., "Die berechnung optischer und elektrostatischer gitterpotentiale," Ann. Phys., Vol. 64, 253-287, 1921, Translated by A. Cornell, Atomics International Library, 1964.

13. Stevanovic, I., P. Crespo-Valero, K. Blagovic, F. Bongard, and J. R. Mosig, "Integral-equation analysis of 3-D metallic objects arranged in 2-D lattices using the Ewald transformation," IEEE Trans. Antennas Propag., Vol. 54, No. 10, 3688-3697, Oct. 2006.

14. Mathis, W. and A. F. Peterson, "Efficient electromagnetic analysis of a doubly infinite array of rectangular apertures," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 1, 46-54, Jan. 1998.

15. Eibert, T. F., J. L. Volakis, D. R. Wilton, and D. R. Jackson, "Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation," IEEE Trans. Antennas Propag., Vol. 47, No. 5, 843-850, May 1999.

16. Olver, F. W. J., D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, New York, 2010.

17. Kinayman, N. and M. I. Aksun, "Comparative study of acceleration techniques for integrals and series in electromagnetic problems," Radio Sci., Vol. 30, No. 6, 1713-1722, Nov./Dec. 1995.

18. Ewald, P. P., "Dispersion und doppelbrechung von elektronengittern (kristallen)," Dissertation, Munchen, 1912, also Ann. Phys., Vol. 49, 1, 1916.

19. Jordan, K. E., G. R. Richter, and P. Sheng, "An efficient numerical evaluation of the Green's function for the Helmholtz operator on periodic structures," J. Comp. Phys., Vol. 63, 222-235, 1986.

20. Stevanovic, Mosig, "Periodic Green's function for skewed 3-d lattices using the Ewald transformation," Microwave and Opt. Tech. Letters, Vol. 49, No. 6, 1353-1357, Jun. 2007.

21. Hanninen, I., M. Taskinen, and J. Sarvas, "Singularity subtraction integral formulae for surface integral equations with rwg, rooftop and hybrid basis functions," Progress In Electromagnetics Research, Vol. 63, 243-278, 2006.

22. McGrath, D. T. and V. P. Pyati, "Phased array antenna analysis with the hybrid finite element method," IEEE Trans. Antennas Propag., Vol. 42, No. 12, 1625-1630, 1994.

23. Chen, C.-C., "Diffraction of electromagnetic waves by a conducting screen perforated periodically with circular holes," IEEE Trans. Microw. Theory Tech., Vol. 19, No. 5, 475-481, May 1971.

24. Bozzi, M., L. Perregrini, J. Weinzierl, and C. Winnewisser, "Efficient analysis of quasi-optical filters by a hybrid MoM/BI-RME method," IEEE Trans. Antennas Propag., Vol. 49, No. 7, 1054-1064, Jul. 2001.

25. Li, M. and W. C. Chew, "Applying divergence-free condition in solving the volume integral equation," Progress In Electromagnetics Research, Vol. 57, 311-333, 2006.

26. Fan, Z., R.-S. Chen, H. Chen, and D.-Z. Ding, "Weak form nonuniform fast fourier transform method for solving volume integral equations," Progress In Electromagnetics Research, Vol. 89, 275-289, 2009.

27. Shi, Y., X. Luan, J. Qin, C. Lv, and C.-H. Liang, "Multilevel Green's function interpolation method solution of volume/surface integral equation for mixed conducting/bi-isotropic objects," Progress In Electromagnetics Research, Vol. 107, 239-252, 2010.

28. Zhao, K., M. N. Vouvakis, and J. F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Trans. EMC, Vol. 47, No. 4, 763-773, Nov. 2005.