Vol. 123
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-01-06
A Novel Estimation Approach of Dynamic and Coupling Baseline for Distributed Satellite SAR
By
Progress In Electromagnetics Research, Vol. 123, 467-484, 2012
Abstract
In distributed satellite synthetic aperture radar (DS-SAR), along-track and cross-track baselines couple with each other and change dynamically due to formation flying, which makes it difficult to estimate interferometric baseline accurately. To solve the problem, a novel high-precision baseline estimation approach based on interferometric phase is proposed. By modeling accurate relationship between coupling baselines and two-dimensional (azimuth and range) inteferometric fringe frequency under the ellipsoid earth model, the along-track and cross-track baseline can be estimated separately by interferometric phase decoupling. By selecting several segments from interferometric phase during the whole data-take time and estimating instantaneous baseline of each segment, the dynamic baseline can be obtained via a linear filtering. Besides, to improve the baseline estimation accuracy, Semi-Newton iterative method is applied to acquire high-precision fringe frequency estimation, which can make the baseline estimation achieve centimeter level precision. The simulation validates the approach.
Citation
Liang Feng Huaping Xu Chun-Sheng Li Shuang Li Han Gao , "A Novel Estimation Approach of Dynamic and Coupling Baseline for Distributed Satellite SAR," Progress In Electromagnetics Research, Vol. 123, 467-484, 2012.
doi:10.2528/PIER11083105
http://www.jpier.org/PIER/pier.php?paper=11083105
References

1. Zhou, Y. Q., H. P. Xu, and J. Chen, "Research progress of distributed small satellites synthetic aperture radar," ACTA Electronic SINICA, Vol. 31, No. 12, 1939-1944, 2003.

2. Massonnet, D., "Capabilities and limitations of the interferometric cartwheel," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 3, 506-520, 2001.
doi:10.1109/36.911109

3. Wu, B. I., M. C. Yeung, Y. Hara, and J. A. Kong, "InSAR height inversion by using 3-D phase projection with multiple baselines," Progress In Electromagnetics Research, Vol. 91, 173-193, 2009.
doi:10.2528/PIER09020902

4. Li, S., H. P. Xu, and L. Q. Zhang, "An advanced Dss-SAR InSAR terrain height estimation approach based on baseline decoupling," Progress In Electromagnetics Research, Vol. 119, 207-224, 2011.
doi:10.2528/PIER11042301

5. Liu, D., Y. Du, G. Sun, W.-Z. Yan, and B.-I. Wu, "Analysis of InSAR sensitivity to forest structure based on radar scattering model," Progress In Electromagnetics Research, Vol. 84, 149-171, 2008.
doi:10.2528/PIER08071802

6. Ren, K., V. Prinet, and X. Q. Shi, "Comparison of satellite baseline estimation methods for interferometry applications," IGARSS'03, Vol. 6, 3821-3823, 2003.

7. Kimura, H. and M. Todo, "Baseline estimation using ground points for interferometric SAR," IGARSS'97, Vol. 1, 442-444, 1997.

8. Zhang, X. L., S. J. Huang, and J. G. Wang, "Approaches to estimating terrain height and baseline for interferometric SAR," Electronics Letters, Vol. 34, No. 25, 2428-2429, 1998.
doi:10.1049/el:19981475

9. Chen, J., S. Quegan, and X. Yin, "Calibration of spaceborne linearly polarized low frequency SAR using polarimetric selective radar calibrators," Progress In Electromagnetics Research, Vol. 114, 89-111, 2011.

10. Wei, H. J., J. B. Zhu, and D. N. Liang, "An accurate baseline estimate method for rugged terrain utilize rough DEM," Journal of National University of Defence Technology, Vol. 32, No. 1, 74-78, 2010.

11. Lin, J. T., J. Hong, and J. W. Hu, "Calibration for spaceborne InSAR baseline vector based on sea surface," Foreign Electronic Measurement Technology, Vol. 29, No. 3, 31-34, 2010.

12. Singh, K., et al., "Baseline estimation in interferometric SAR," IGARSS'97, Vol. 1, 454-456, 1997.

13. Tang, X. Q., M. S. Xiang, and Y. R. Wu, "An improved baseline estimation approach based on the interferometric phases," Journal of Electronics & Information Technology, Vol. 30, No. 12, 2795-2799, 2008.
doi:10.3724/SP.J.1146.2007.01974

14. Atwood, D. K., et al., "DEM control in Arctic Alaska with ICESat laser altimetry," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, 3710-3720, 2007.
doi:10.1109/TGRS.2007.904335

15. Brown, Jr., C. G., K. Sarabandi, and L. E. Pierce, "Validation of the Shuttle Radar Topography Mission height data," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 8, 1707-1715, 2005.
doi:10.1109/TGRS.2005.851789

16. Ma, L., Z. F. Li, and G. Liao, "System error analysis and calibration methods for multi-channel SAR," Progress In Electromagnetics Research, Vol. 112, 309-327, 2011.

17. Dang, Y. W. and W. D. Yu, "Analysis of the along-track baseline decorrelation of distributed small satellites SAR," Journal of Electronics & Information Technology, Vol. 29, No. 12, 2863-2866, 2007.

18. Krieger, G., et al., "TanDEM-X: A satellite formation for high-resolution SAR interferometry," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, 3317-3341, 2007.
doi:10.1109/TGRS.2007.900693

19. Krieger, G., et al., "Interferometric synthetic aperture radar (SAR) missions employing formation flying," Proceedings of the IEEE, Vol. 98, No. 5, 816-843, 2010.
doi:10.1109/JPROC.2009.2038948

20. Xu, Q., G. S. Liao, and Y. Liu, "3-D baseline error estimation method for distributed small satellites," Journal of Xidian University, Vol. 25, No. 4, 668-672, 2008.

21. Liu, Y., Z. M. Wang, and D. Y. Yi, "Associated modeling and error analysis between space states and alimeter baseline of distributed SAR," Journal of System Simulation, Vol. 19, No. 15, 3468-3472, 2007.

22. Cumming, I. G. and J. R. Bennett, "Digital processing of SEASAT SAR data," IEEE International Conference on Acoustics, Speech & Signal Processing, Vol. 4, 710-718, 1979.

23. Huang, Y., Research on Image Formation Technology for High Resolution SAR, Beihang University, Beijing, 1999.

24. Sun, J., S. Mao, G. Wang, and W. Hong, "Polar format algorithm for spotlight bistatic SAR with arbitrary geometry configuration," Progress In Electromagnetics Research, Vol. 103, 323-338, 2010.
doi:10.2528/PIER10030703

25. Xu, H. P., Y. Q. Zhou, and C. S. Li, "Signal model of single look complex image for distributed small satellite synthetic aperture radar," Journal of Electronics & Information Technology, Vol. 26, 168-172, 2004.

26. Guo, D., H. Xu, and J. Li, "Extended wavenumber domain algorithm for highly squinted sliding spotlight SAR data processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011.

27. Xu, W., P. Huang, and Y.-K. Deng, "Multi-channel Spcmb-Tops SAR for high-resolution wide-swath imaging," Progress In Electromagnetics Research, Vol. 116, 533-551, 2011.

28. Liu, Q., W. Hong, W. Tan, Y. Lin, Y. Wang, and Y. Wu, "An improved polar format algorithm with performance analysis for geosynchronous circular SAR 2D imaging," Progress In Electromagnetics Research, Vol. 119, 155-170, 2011.
doi:10.2528/PIER11060503

29. Sansosti, E., et al., "Geometrical SAR image registration," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 10, 2861-2870, 2006.
doi:10.1109/TGRS.2006.875787

30. Nitti, D. O., et al., "Impact of DEM-assisted coregistration on high-resolution SAR interferometry," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 3, 1127-1143, 2011.
doi:10.1109/TGRS.2010.2074204

31. Li, C. and D. Y. Zhu, "A residue-pairing algorithm for InSAR phase unwrapping," Progress In Electromagnetics Research, Vol. 95, 341-354, 2009.
doi:10.2528/PIER09070706

32. Abatzoglou, T. J., "A fast maximum likelihood algorithm for frequency estimation of a sinusoid based on Newton's method," IEEE Trans. on Acoustics, Speech and Signal Processing, Vol. 33, No. 1, 77-89, 1985.
doi:10.1109/TASSP.1985.1164541

33. Xu, H. P., J. Chen, B. F. Wang, and Y. Q. Zhou, "Quick method of distributed small satellite synthetic aperture radar single-look complex image simulation," Journal of Beijing University of Aeronautics and Astronautics, Vol. 32, No. 4, 445-449, 2006.

34. Chang, Y.-L., C.-Y. Chiang, and K.-S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11061507

35. Zhang, M., Y. W. Zhao, H. Chen, and W.-Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.
doi:10.2528/PIER11071501