1. Petit, R., Electromagnetic Theory of Gratings, Springer-Verlag, Berlin, Heidelberg, 1980.
2. Yasumoto, K., "Electromagnetic Theory and Applications for Photonic Crystals," CRC Press, New York, 2005. Google Scholar
3. Yasumoto, K. and K. Yoshitomi, "Efficient calculation of lattice sums for free-space periodic Green's function," IEEE Trans. Antennas Propag., Vol. 47, No. 6, 1050-1055, Jun. 1999. Google Scholar
4. Tayeb, G. and D. Maystre, "Rigorous theoretical study of finite-size two-dimensional photonic crystals doped by microcavities," J. Opt. Soc. Am. A, Vol. 14, No. 12, 3323-3332, 1997. Google Scholar
5. Yasumoto, K., H. Toyama, and T. Kushta, "Accurate analysis of two-dimensional electromagnetic scattering from multilayered periodic arrays of circular cylinders using lattice sums technique," IEEE Trans. Antennas Propag., Vol. 52, No. 10, 2603-2611, 2004. Google Scholar
6. Pelosi, G., A. Cocchi, and A. Monorchio, "A hybrid FEM-based procedure for the scattering from photonic crystals illuminated by a Gaussian beam," IEEE Trans. Antennas Propag., Vol. 48, 973-980, 2000. Google Scholar
7. Qiu, M. and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," Journal of Applied Physics, Vol. 87, No. 12, 8268-8275, 2000. Google Scholar
8. Jandieri, V., K. Yasumoto, and B. Gupta, "Directivity of radiation from a localized source coupled to electromagnetic crystals," International Journal of Infrared, Millimetre and Terahertz Waves, Vol. 30, No. 10, 1102-1112, 2009. Google Scholar
9. Russell, P. S., "Photonic-crystal fibers," J. Lightwave Technol., Vol. 24, No. 12, 4729-4749, 2006. Google Scholar
10. Knight, J. C., J. Broeng, T. A. Birks, and P. S. J. Russell, "Photonic band gap guidance in optical fibers," Science, Vol. 282, 1476-1478, 1998. Google Scholar
11. Boutayeb, H. and T. Denidni, "Metallic cylindrical EBG structures with defects: Directivity analysis and design optimization," IEEE Trans. Antennas Propag., Vol. 55, No. 11, 3356-3361, 2007. Google Scholar
12. Biancotto, C. and P. Record, "Design of a beam forming dielectric cylindrical EBG antenna," Progress In Electromagnetics Research B, Vol. 18, 327-346, 2009. Google Scholar
13. Chreim, H., M. Hajj, E. Arnaud, B. Jecko, C. Dall'omo, and P. Dufrane, "Multibeam antenna for telecommunications networks using cylindrical EBG structures ," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 665-669, 2009. Google Scholar
14. Palikaras, G., A. Feresidis, and J. Vardaxoglou, "Cylindrical electromagnetic bandgap structures for directive base station antennas ," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 87-89, 2004. Google Scholar
15. Yasumoto, K. and H. Jia, "Modeling of photonic crystals by layered periodic arrays of cylinders," Electromagnetic Theory and Applications for Photonic Crystals, K. Yasumoto (ed.), 123-190, CRC Press, 2005. Google Scholar
16. Yasumoto, K., V. Jandieri, and B. Gupta, "Guidance and scattering of electromagnetic waves by layered cylindrical arrays of circular rods," Proc. IEEE Applied Electromagnetics Conference, 1-4, Kolkata, India, 2009.
17. Jandieri, V. and K. Yasumoto, "Electromagnetic scattering by layered cylindrical arrays of circular rods," IEEE Trans. Antennas Propag., Vol. 59, No. 6, 2437-2441, 2011. Google Scholar
18. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.
19. Elsherbeni, A. and A. Kishk, "Modeling of cylindrical objects by circular dielectric and conducting cylinders," IEEE Trans. Antennas Propag., Vol. 40, No. 1, 96-99, Jan. 1992. Google Scholar
20. Henin, B. H., M. H. Al Sharkawy, and A. Z. Elsherbeni, "Scattering of obliquely incident plane wave by an array of parallel concentric metamaterials cylinders," Progress In Electromagnetics Research, Vol. 77, 285-307, 2007. Google Scholar
21. Yasumoto, K., "Semi-analytical approach for a specific microstructured fiber," PIERS Online, Vol. 5, No. 1, 95-100, 2009. Google Scholar
22. Jandieri, V., K. Yasumoto, A. Sharma, and H. Chauhan, "Modal analysis of specific microstructured optical fibers using a model of layered cylindrical arrays of circular rods," IEICE Trans. Electron., Vol. 93, No. 1, 17-23, 2010. Google Scholar
23. Jandieri, V. and K. Yasumoto, "Analysis of scattering from a finite array of circular cylinders using a model of layered cylindrical arrays," Optics Communications, Vol. 284, 4109-4113, 2011. Google Scholar
24. Jandieri, V., K. Yasumoto, and Y.-K. Cho, "Analysis of radiation from line source located in cylindrical electromagnetic bandgap structures with defects," IEICE Trans. Electron., Vol. 94, No. 8, 1245-1252, 2011. Google Scholar
25. Jakoby, B., "Scattering of obliquely incident waves by an impedance cylinder with inhomogeneous bianisotropic coating," IEEE Trans. Antennas Propag., Vol. 45, No. 4, 648-655, 1997. Google Scholar
26. Okamoto, N. and R. Yamada, "General properties of electromagnetic scattering by inhomogeneous anisotropic composite obstacles of arbitrary shape ," Journal of Applied Physics, Vol. 44, No. 5, 2161-2165, 1973. Google Scholar
27. Abramowitz, M. and I. Stegun, "Handbook of Mathematical Functions," Dover Publications, 1965. Google Scholar
28. Polewski, M. and J. Mazur, "Scattering by an array of conducting, lossy dielectric, ferrite and pseudochiral cylinders," Progress In Electromagnetics Research, Vol. 38, 283-310, 2002. Google Scholar
29. Jandieri, V. and K. Yasumoto, "Stopband and resonance characteristics of cylindrical electromagnetic bandgap structures," PIERS Proceedings, 198-202, Suzhou, China, Sep. 12-16, 2011. Google Scholar