Vol. 121
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-10-27
Interaction of an Asymmetric Scanning Near Field Optical Microscopy Probe with Fluorescent Molecules
By
Progress In Electromagnetics Research, Vol. 121, 281-299, 2011
Abstract
We present a numerical analysis of the interaction between novel scanning near field optical microscopy probes based on an asymmetric structure and a single fluorescent molecule. Our finite element analysis shows how such near field probes can be effectively used for high resolution detection of single molecules, in particular those with a longitudinal dipole moment. At the same time, fluorescent molecules can be exploited as point-like probes of the single vectorial components of the near field distribution at the probe apex, providing a powerful tool for near field probe characterization.
Citation
Valeria Lotito, Urs Sennhauser, Christian V. Hafner, and Gian-Luca Bona, "Interaction of an Asymmetric Scanning Near Field Optical Microscopy Probe with Fluorescent Molecules," Progress In Electromagnetics Research, Vol. 121, 281-299, 2011.
doi:10.2528/PIER11091703
References

1. Dunn, R. C., "Near-field scanning optical microscopy," Chem. Rev., Vol. 99, 2891-2927, 1999.        Google Scholar

2. Van Zanten, T. S., A. Cambi, and M. F. Garcia-Parajo, "A nanometer scale optical view on the compartmentalization of cell membranes," Biochimica and Biophysica Acta, Vol. 1798, 777-787, 2010.        Google Scholar

3. Hsu, J. W. P., "Near-field scanning optical microscopy studies of electronic and photonic materials and devices," Materials Science and Engineering, Vol. 33, 1-50, 2001.        Google Scholar

4. Novotny, L. and B. Hecht, Principles of Nano-optics, Cambridge University Press, 2006.

5. Antosiewicz, T. J., M. Marciniak, and T. Szoplik, "On SNOM resolution improvement," Photonic Crystals: Physics and Technology, 217-238, Springer, Milan, 2008.        Google Scholar

6. Mononobe, S., "Near-field optical fiber probes and the imaging applications,", M. Ohtsu, (Ed.), Springer Series in Optical Science, Vol. 95, Progress in Nano-electro-optics: Industrial Applications and Dynamics of the Nano-optical Systems, 1-53, Springer, Berlin-Heidelberg, 2005.        Google Scholar

7. Drezet, A., M. J. Nasse, S. Huant, and J. C. Woehl, "The optical near-field of an aperture tip," Europhys. Lett., Vol. 66, No. 1, 41-47, 2004.        Google Scholar

8. Liu, L. and S. He, "Design of metal-cladded near-field fiber probes with a dispersive body-of-revolution finite-difference time-domain method," Appl. Opt., Vol. 44, No. 17, 3429-3437, 2005.        Google Scholar

9. Michalski, K. A., "Complex image method analysis of a plane wave-excited subwavelength circular aperture in a planar screen," Progress In Electromagnetics Research B, Vol. 27, 253-272, 2011.        Google Scholar

10. Hartschuh, A., "Tip-enhanced near-field optical microscopy," Angewandte Chemie, Vol. 47, 8187-8191, 2008.        Google Scholar

11. Inouye, Y., "Apertureless metallic probes for near-field microscopy,", S. Kawata (Ed.), Springer Topics in Applied Physics, Vol. 81, Near-field Optics and Surface Plasmon Polaritons, 29-48, Springer, Berlin-Heidelberg, 2001.        Google Scholar

12. Chuang, C.-H. and Y.-L. Lo, "Signal analysis of apertureless scanning near-field optical microscopy with superlens," Progress In Electromagnetics Research, Vol. 109, 83-106, 2010.        Google Scholar

13. Amin, A. S. N., M. Mirhosseini, and M. Shahabadi, "Modal analysis of multilayer conical dielectric waveguides for azimuthal invariant modes ," Progress In Electromagnetics Research, Vol. 105, 213-229, 2010.        Google Scholar

14. Ding, W., S. R. Andrews, and S. A. Maier, "Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Phys. Rev. A, Vol. 75, 063822-1-10, 2007.        Google Scholar

15. Vaccaro, L., L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dändliker, "Propagation of the electromagnetic field in fully coated near-field optical probes ," Appl. Phys. Lett., Vol. 83, No. 3, 584-586, 2003.        Google Scholar

16. Bouhelier, A., J. Renger, M. R. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy," J. of Microsc., Vol. 210, No. 3, 220-224, 2003.        Google Scholar

17. Tortora, P., E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, "Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes," Ultramicroscopy, Vol. 107, 158-165, 2007.        Google Scholar

18. Chen, W. and Q. Zhan, "Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination," Opt. Express, Vol. 15, No. 7, 4106-4111, 2007.        Google Scholar

19. Nakagawa, W., L. Vaccaro, H. P. Herzig, and C. Hafner, "Polarization mode coupling due to metal-layer modifications in apertureless near-field scanning optical microscopy probes," J. of Comput. and Theor. Nanosci., Vol. 4, No. 3, 1-12, 2007.        Google Scholar

20. Lotito, V., U. Sennhauser, and C. Hafner, "Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips," Opt. Express, Vol. 18, No. 8, 8722-8734, 2010.        Google Scholar

21. Lotito, V., U. Sennhauser, and C. Hafner, "Finite element analysis of asymmetric scanning near field optical microscopy probes," J. of Comput. and Theor. Nanosci., Vol. 7, No. 8, 1596-1609, 2010.        Google Scholar

22. Yatsui, T., K. Itsumi, M. Kourogi, and M. Ohtsu, "Metallized pyramidal silicon probe with extremely high throughput and resolution capability for optical near-field technology," Appl. Phys. Lett., Vol. 80, No. 13, 2257-2259, 2002.        Google Scholar

23. Betzig, E. and R. J. Chichester, "Single molecules observed by near-field scanning optical microscopy," Science, Vol. 262, No. 5138, 1422-1425, 1993.        Google Scholar

24. Hollars, W. and R. C. Dunn, "Probing single molecule orientations in model lipid membranes with near-field scanning optical microscopy," J. of Chem. Phys., Vol. 112, No. 18, 7822-7830, 2000.        Google Scholar

25. Veerman, J. A., M. F. Garcia-Parajo, L. Kuipers, and N. F. van Hulst, "Single molecule mapping of the optical field distribution of probes for near-field microscopy," J. of Microsc., Vol. 194, No. 2-3, 447-482, 1999.        Google Scholar

26. Moerland, R. J., N. F. van Hulst, H. Gersen, and L. Kuipers, "Probing the negative permittivity perfect lens using near-field optics and single molecule detection," Opt. Express, Vol. 13, No. 5, 1604-1614, 2005.        Google Scholar

27. Kulzer, F. and M. Orrit, "Single-molecule optics," Ann. Rev. Phys. Chem., Vol. 55, 585-611, 2004.        Google Scholar

28. García-Parajó, M. F., J.-A. Veerman, R. Bouwhuis, R. Vallée, and N. F. van Hulst, "Optical probing of single fluorescent molecules and proteins ," Chemphyschem, Vol. 2, 347-360, 2001.        Google Scholar

29. Van Hulst, N. F., J.-A. Veerman, M. Garcia-Parajo, and L. K. Kuipers, "Analysis of individual (macro) molecules and proteins using near-field optics," J. of Chem. Phys., Vol. 112, No. 18, 7799-7810, 2000.        Google Scholar

30. Van Hulst, N. F., M. F. Garcia-Parajo, M. H. P. Moers, J.-A. Veerman, and A. G. T. Ruiter, "Near-field fluorescence imaging of genetic material: Toward the molecular limit," J. of Structural Biology, Vol. 119, 222-231, 1997.        Google Scholar

31. Ruiter, A. G. T., J. A. Veerman, M. F. Garcia-Parajo, and N. F. van Hulst, "Single molecule rotational and translational diffusion observed by near-field scanning optical microscopy," J. Phys. Chem. A, Vol. 101, 7318-1323, 1997.        Google Scholar

32. Frey, H. G., C. Bolwien, A. Brandenburg, R. Ros, and D. Anselmetti, "Optimized apertureless optical near-field probes with 15nm optical resolution ," Nanotechnology, Vol. 17, 3105-311, 2006.        Google Scholar

33. Butter, J. Y. P. B. Hecht, "Aperture scanning near-field optical microscopy and spectroscopy of single terrylene molecules at 1.8 K," Nanotechnology, Vol. 17, 1547-1550, 2006.        Google Scholar

34. Lotito, V., U. Sennhauser, C. Hafner, and G.-L. Bona, "Fully metal-coated scanning near-field optical microscopy probes with spiral corrugations for superfocusing under arbitrarily oriented linearly polarized excitation," Plasmonics, Vol. 6, 327-336, 2011.        Google Scholar

35. Lotito, V., U. Sennhauser, and C. V. Hafner, "Numerical analysis of novel asymmetric SNOM tips," PIERS Online, Vol. 7, No. 4, 394-400, 2011.        Google Scholar

36. Frey, H. G., F. Keilmann, A. Kriele, and R. Guckenberger, "Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe," Appl. Phys. Lett., Vol. 81, No. 26, 5030-5032, 2002.        Google Scholar

37. Taminiau, T. H., F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, "Near field driving of a optical monopole antenna," J. Opt. A: Pure Appl. Opt., Vol. 9, S315-S321, 2007.        Google Scholar

38. Li, Q., X.-J. Chen, Y. Xu, S. Lan, H.-Y. Liu, Q.-F. Dai, and L.-J. Wu, "Photoluminescence properties of CdSe quantum dots accompanied with rotation of the defocused wide-field fluorescence images," J. Phys. Chem. C, Vol. 114, 13427-13432, 2010.        Google Scholar

39. Bouhelier, A., M. Beversluis, A. Hartschuh, and L. Novotny, "Near-field second-harmonic generation induced by local field enhancement ," Phys. Rev. Lett., Vol. 90, No. 1, 013903-1-4, 2003.        Google Scholar

40. Hayazawa, N., Y. Saito, and S. Kawata, "Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy," Appl. Phys. Lett., Vol. 85, No. 25, 6239-6241, 2004.        Google Scholar