1. Kornfeld, G. K., E. Bosch, W. Gerum, and G. Fleury, "60-GHz space TWT to address future market," IEEE Trans. Electron Devices, Vol. 48, No. 1, Jan. 2001.
doi:10.1109/16.892169 Google Scholar
2. Kesari, V., "Beam-absent analysis of disc-loaded-coaxial waveguide for application in gyro-TWT (Part-1)," Progress In Electromagnetics Research, Vol. 109, 211-227, 2010.
doi:10.2528/PIER10071305 Google Scholar
3. Kesari, V., "Beam-present analysis of disc-loaded-coaxial waveguide for application in gyro-TWT (Part-2)," Progress In Electromagnetics Research, Vol. 109, 229-243, 2010.
doi:10.2528/PIER10071505 Google Scholar
4. Kesari, V. and J. P. Keshari, "Analysis of a circular waveguide loaded with dielectric and metal discs," Progress In Electromagnetics Research, Vol. 111, 253-269, 2011.
doi:10.2528/PIER10110207 Google Scholar
5. Mustafa, F. and A. M. Hashim, "Properties of electromagnetic fields and effective permittivity excited by drifting plasma waves in semiconductor-insulator interface structure and equivalent transmission line technique for multi-layered structure," Progress In Electromagnetics Research, Vol. 104, 403-425, 2010.
doi:10.2528/PIER10041504 Google Scholar
6. Mineo, M., A. Di Carlo, and C. Paoloni, "Analytical design method for corrugated rectangular waveguide SWS THz vacuum tubes," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2479-2494, 2010.
doi:10.1163/156939310793675745 Google Scholar
7. Li, Z., J. H. Wang, F. Li, Z. Zhang, and M. Chen, "A new insight into the radiation mechanism of fast and slow traveling waves," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1874-1885, 2011.
doi:10.1163/156939311797454006 Google Scholar
8. Shi, Z. J., Z. Q. Yang, F. Lan, G. Xi, F. Tao, and Z. Liang, "Investigation of a 30-GHz relativistic diffraction generator with a coaxial reflector," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2453-2462, 2010.
doi:10.1163/156939310793675682 Google Scholar
9. Malek, F., "The analytical design of a folded waveguide traveling wave tube and small signal gain analysis using Madey's theorem," Progress In Electromagnetics Research, Vol. 98, 137-162, 2009.
doi:10.2528/PIER09092604 Google Scholar
10. Wilson, J. D., P. Ramins, and D. A. Force, "A high-effciency 59 to 64 GHz TWT for intersatellite communications," Proc. IEDM Tech. Dig., 585-588, 1991. Google Scholar
11. Liu, Y., Y. B. Gong, Y. Y. Wei, J. Xu, Z. Y. Duan, and W. X. Wang, "Design of a 100-W V-band coupled-cavity," China-Japan Joint Microwave Conference (CJMW), 458-460, Hangzhou, China, 2011.
12. Cooke, S. J., B. Levush, T. M. Antonsen, and Jr., "A coupled-cavity slow-wave structure for sheet-beam devices," Proc. IEEE Int. Vac. Electron. Conf., 487-488, Monterey, CA, 2006.
13. Larsen, P. B., D. K. Abe, S. J. Cooke, B. Levush, T. M. Antonsen, Jr., and R. E. Myers, "Characterization of a Ka-band sheet-beam coupled-cavity slow-wave structure," IEEE Trans. Plasma Sci., Vol. 38, No. 6, 1244-1254, Jun. 2010.
doi:10.1109/TPS.2010.2043690 Google Scholar
14. Shin, Y. M., L. R. Barnett, N. C. Luhmann, and Jr., "Phase-shift traveling-wave-tube circuit for ultrawideband high-power submillimeter-wave generation," IEEE Trans. Electron Devices, Vol. 56, No. 5, 706-712, May 2009.
doi:10.1109/TED.2009.2015404 Google Scholar
15. Han, S. T., K. H. Jang, J. K. So, J. I. Kim, Y. M. Shin, N. M. Ryskin, S. S. Chang, and G. S. Park, "Low-voltage operation of ka-band folded waveguide traveling-wave tube," IEEE Trans. Plasma Sci., Vol. 32, No. 1, 60-66, Feb. 2004.
doi:10.1109/TPS.2004.823978 Google Scholar
16. Kim, H. J., H. J. Kim, and J. J. Choi, "MAGIC3D simulations of a 500-W Ka-band coupled-cavity traveling-wave tube," IEEE Trans. Electron Devices, Vol. 56, No. 1, Jan. 2009. Google Scholar
17. Ansoft HFSS User's Reference, Ansoft Corp. [Online] Available: http://www.ansoft.com.cn/.
18. CST MWS Tutorials, CST Corp. [Online] Available: http://www.cst-china.cn/.
19. CST PS Tutorials, CST Corp. [Online] Available: http://www.cst-china.cn/.
20. James, B. G. and P. Kolda, "A ladder circuit coupled-cavity TWT at 80--100 GHz," Proc. IEDM Tech. Dig., Vol. 32, 494-497, 1986. Google Scholar
21. Booske, J. H., M. C. Converse, C. L. Kory, C. T. Chevalier, D. A. Gallagher, K. E. Kreischer, V. O. Heinen, and S. Bhattacharjee, "Accurate parametric modeling of folded waveguide circuits for millimeter wave traveling wave tubes," IEEE Trans. Electron Devices, Vol. 52, No. 5, 685-693, May 2005.
doi:10.1109/TED.2005.845798 Google Scholar
22. Pierce, J. R., Traveling-wave Tubes, Van Nostrand, 1965.
23. Christie, V. L., M. Sumathy, L. Kumar, and S. Prasad, "Optimization of waveguide coupler for coupled-cavity TWT using artificial neural network," Proc. IEEE International Vacuum Electronics Conference (IVEC), 263-264, 2010.
doi:10.1109/IVELEC.2010.5503501 Google Scholar
24. Kageyama, T., "The design of the transition region in coupled-cavity TWT," Proc. IEEE International Vacuum Electronics Conference (IVEC), 102-103, 2002. Google Scholar
25. Larsen, P. B., D. K. Abe, B. Levush, T. M. Antosen, and Jr., "Coupling a waveguide input to a sheet-beam coupled-cavity slowe-wave structure," Proc. IEEE International Vacuum Electronics Conference (IVEC), 209-210, 2011.
doi:10.1109/IVEC.2011.5746949 Google Scholar
26. Wilson, J. D. and C. L. Kory, "Simulation of cold-test parameters and RF output power for a coupled-cavity traveling-wave tube," IEEE Trans. Electron Devices, Vol. 42, No. 11, Nov. 1995. Google Scholar
27. Tischer, F. J., "Excess conduction losses at millimeter wave-lengths," IEEE Trans. Microw. Theory Tech., Vol. 24, 853-858, Nov. 1976.
doi:10.1109/TMTT.1976.1128973 Google Scholar
28. Gilmour, A. S., Jr., Principles of Traveling-Wave Tubes, Artech House, 1994.
29. Nguyen, K. T., J. A. Pasour, T. M. Antonsen, Jr., P. B. Larsen, J. J. Petillo, and B. Levush, "Intense sheet electron beam transport in a uniform solenoidal magnetic field," IEEE Trans. Electron Devices, Vol. 55, No. 5, 744-752, May 2009.
doi:10.1109/TED.2009.2015420 Google Scholar
30. Wilson, J. D., "Design of high-efficiency wide-bandwidth coupled-cavity traveling-wave tube phase velocity tapers with simulated annealing algorithms," IEEE Trans. Electron Devices, Vol. 48, No. 1, Jan. 2001.
doi:10.1109/16.892174 Google Scholar