1. Ziolkowski, R. W. and N. Engheta, "Special issue on metamaterials," IEEE Trans. on Antennas and Propag., Vol. 51, Oct. 2003. Google Scholar
2. Itoh, T. and A. A. Oliner, "Special issue on metamaterials structures, phenomena and applications," IEEE Trans. on Microwave Theory and Tech., Vol. 53, Apr. 2005. Google Scholar
3. Canto, J. R., C. R. Paiva, and A. M. Barbosa, "Dispersion and losses in surface waveguides containing double negative or chiral metamaterials," Progress In Electromagnetics Research, Vol. 116, 409-423, 2011. Google Scholar
4. Chen, H., L. Huang, X. Cheng, and H. Wang, "Magnetic properties of metamaterial composed of closed rings," Progress In Electromagnetics Research, Vol. 115, 317-326, 2011. Google Scholar
5. He, Y., J.-Q. Shen, and S. He, "Consistent formalism for the momentum of electromagnetic waves in lossless dispersive metamaterials and the conservation of momentum," Progress In Electromagnetics Research, Vol. 116, 81-106, 2011. Google Scholar
6. Liu, L., J. Sun, X. Fu, J. Zhou, Q. Zhao, B. Fu, J. Liao, and D. Lippens, "Artificial magnetic properties of dielectric metamaterials in terms of effective circuit model," Progress In Electromagnetics Research, Vol. 116, 159-170, 2011. Google Scholar
7. Liu, S.-H. and L.-X. Guo, "Negative refraction in an anisotropic metamaterial with a rotation angle between the principal axis and the planar interface," Progress In Electromagnetics Research, Vol. 115, 243-257, 2011. Google Scholar
8. Valagiannopoulos, C. A., "Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders," Progress In Electromagnetics Research, Vol. 114, 51-66, 2011. Google Scholar
9. Feng, T., Y. Li, H. Jiang, W. Li, F. Yang, X. Dong, and H. Chen, "Tunable single-negative metamaterials based on microstrip transmission line with varactor diodes loading," Progress In Electromagnetics Research, Vol. 120, 35-50, 2011. Google Scholar
10. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011. Google Scholar
11. Shao, J., H. Zhang, Y. Lin, and H. Xin, "Dual-frequency electromagnetic cloaks enabled by LC-based metamaterial circuits," Progress In Electromagnetics Research, Vol. 119, 225-237, 2011.
doi:10.2528/PIER11052507 Google Scholar
12. Wang, B. and K.-M. Huang, "Spatial microwave power combining with anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 114, 195-210, 2011. Google Scholar
13. Xu, S., L. Yang, L. Huang, and H. Chen, "Experimental measurement method to determine the permittivity of extra thin materials using resonant metamaterials," Progress In Electromagnetics Research, Vol. 120, 327-337, 2011. Google Scholar
14. Zhou, B., H. Li, X. Zou, and T.-J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011. Google Scholar
15. Zhou, H., F. Ding, Y. Jin, and S. He, "Terahertz metamaterial modulators based on absorption," Progress In Electromagnetics Research, Vol. 119, 449-460, 2011.
doi:10.2528/PIER11061304 Google Scholar
16. Luukkonen, O., M. G. Silveirinha, A. B. Yakovlev, C. R. Simovski, I. S. Nefedov, and S. A. Tretyakov, "Effects of spatial dispersion on reflection from mushroom-type artificial impedance surfaces," IEEE Trans. on Microwave Theory and Tech., Vol. 57, No. 11, 2692-2699, Nov. 2009.
doi:10.1109/TMTT.2009.2032458 Google Scholar
17. Smith, D. R. and J. B. Pendry, "Homogenization of metamaterials by field averaging (invited paper)," J. Opt. Soc. Am. B, Vol. 23, 391-403, 2006.
doi:10.1364/JOSAB.23.000391 Google Scholar
18. Erentok, A. and R. W. Ziolkowski, "HFSS modeling of a dipole antenna enclosed in an epsilon-negative (ENG) metamaterial shell," IEEE Antennas and Propagation Society International Symposium, 22-25, Washigton DC, USA, Jul. 2005. Google Scholar
19. Caloz, C., C.-C. Chang, and T. Itoh, "Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations," J. Appl. Physics, Vol. 90, No. 11, 5483-5486, 2001.
doi:10.1063/1.1408261 Google Scholar
20. Gurel, L., O. Ergul, A. Unal, and T. Malas, "Fast and accurate analysis of large metamaterial structures using the multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 95, 179-198, 2009.
doi:10.2528/PIER09060106 Google Scholar
21. Jin, J., The Finite Element Method in Electromagnetics, John Wiley & Sons, New York, 1993.
22. Cevini, G., G. Oliveri, and M. Raffetto, "Further comments on the performances of finite element simulators for the solution of electromagnetic problems involving metamaterials ," Microw. Opt. Tech. Lett., Vol. 48, No. 12, 2524-2529, Dec. 2006.
doi:10.1002/mop.22008 Google Scholar
23. Oliveri, G. and M. Raffetto, "A warning about metamaterials for users of frequency-domain numerical simulators," IEEE Trans. on Antennas and Propag., Vol. 56, No. 3, 792-798, Mar. 2008.
doi:10.1109/TAP.2008.916955 Google Scholar
24. Raffetto, M., "Ill posed waveguide discontinuity problem involving metamaterials with impedance boundary conditions on the two ports," IET Proc. Sci. Measur. Tech., Vol. 1, No. 5, 221-239, Sept. 2007. Google Scholar
25. Oliveri, G. and M. Raffetto, "An assessment by a commercial software of the accuracy of electromagnetic finite element simulators in the presence of metamaterials," The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, COMPEL, Vol. 27, No. 6, 1260-1272, 2008.
doi:10.1108/03321640810905747 Google Scholar
26. Oliveri, G. and M. Raffetto, "Accuracy of finite difference frequency domain methods in the presence of effective metamaterials," Proceedings of the European Microwave Conference, 27-31, Amsterdam, NL, Oct. 2008.
27. Bozza, G., G. Oliveri, and M. Raffetto, "Unusual ill-posed waveguide discontinuity problems: a comparison of frequency domain numerical methods," 9th International Workshop on Finite Elements for Microwave Engineering, 8-9, Bonn, Germany, May 2008. Google Scholar
28. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetic Research, Vol. 32, 65-87, 2001.
doi:10.2528/PIER00080103 Google Scholar
29. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Boston, 2000.
30. COMSOL, Inc., , COMSOL multiphysics 3.4, Jul. 2008, http://-www.comsol.com/.
31. Cevini, G., G. Oliveri, and M. Raffetto, "Performances of electromagnetic finite element simulators in the presence of three-dimensional double negative scatterers," IET Proc. Microwav. Antennas Propag., Vol. 1, No. 3, 737-745, Jun. 2007.
doi:10.1049/iet-map:20060293 Google Scholar
32. Yee, K., "Numerical solution of inital boundary value problems involving Maxwell's equations in isotropic media ," IEEE Trans. on Antennas and Propag., Vol. 14, No. 3, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
33. Clemens, M. and T. Weiland, "Numerical algorithms for the FDiTD and FDFD simulation of slowly varying electromagnetic fields," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 12, No. 1-2, 3-22, 1999.
doi:10.1002/(SICI)1099-1204(199901/04)12:1/2<3::AID-JNM326>3.0.CO;2-5 Google Scholar
34. Champagne, N. J., J. G. Berryman, and H. M. Buettner, "FDFD: A 3D finite-difference frequency-domain code for electromagnetic induction tomography," J. Comp. Physics, Vol. 170, No. 2, 830-848, Jul. 2001.
doi:10.1006/jcph.2001.6765 Google Scholar
35. Collin, R. E., Foundations for Microwave Engineering, McGraw-Hill, New York, 1992.
36. Caorsi, S., A. Massa, M. Pastorino, and A. Rosani, "Microwave medical imaging: Potentialities and limitations of a stochastic optimization technique," IEEE Trans. on Microw. Theory and Tech., Vol. 52, No. 8, 1909-1916, Aug. 2004.
doi:10.1109/TMTT.2004.832016 Google Scholar
37. Oliveri, G., P. Rocca, and A. Massa, "A bayesian compressive sampling-based inversion for imaging sparse scatterers," IEEE Trans. on Geosci. and Remote Sens., Vol. 49, No. 10, 3993-4006, Oct. 2011.
doi:10.1109/TGRS.2011.2128329 Google Scholar
38. Oliveri, G., Y. Zhong, X. Chen, and A. Massa, "Multi-resolution subspace-based optimization method for inverse scattering," J. Optical Soc. Am. A, Vol. 40, No. 10, 2057-2069, Oct. 2011. Google Scholar
39. Rocca, P., M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse scattering problems," Inverse Probl., Vol. 25, No. 12, 1-41, Dec. 2009.
doi:10.1088/0266-5611/25/12/123003 Google Scholar
40. Rocca, P., G. Oliveri, and A. Massa, "Differential evolution as applied to electromagnetics," IEEE Antennas Propag. Mag., Vol. 53, No. 1, 38-49, Feb. 2011.
doi:10.1109/MAP.2011.5773566 Google Scholar