Vol. 123
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-12-29
Gradual Thinning Synthesis for Linear Array Based on Iterative Fourier Techniques
By
Progress In Electromagnetics Research, Vol. 123, 299-320, 2012
Abstract
In this paper, a modified iterative fourier technique (MIFT) for thinning uniformly spaced linear arrays featuring a minimum sidelobe level as well as narrow beam is presented. Since IFT is a thinning procedure which has to be performed many trial times with different initial element distributions to get the optimum solution, it is, to some extent, time consuming. Moreover, in each trial of IFT, the number of iterations is usually low, which makes the method tend to be trapped in local solution even with a large number of trials. Therefore, the similar procedures for both MIFT and IFT are to derive the element excitations from the prescribed array factor using successive forward and backward Fourier transforms, and array thinning is accomplished by setting the amplitudes of a predetermined number of the largest element excitations to unity while the others to zero during each iteration cycle. Furthermore, in MIFT, based on the idea of gradual thinning which is inspired by perturbation theory, an adaptively changed fill factor is proposed to modify IFT with the purpose of accelerating computational speed and facilitating convergence. The immediate result caused by this modified fill factor can be embodied in two points. One point is that unlike the random number of iterations contained in different trials of IFT, the number of iterations in all trials of MIFT is a fixed value and only predetermined by the array inherent features (symmetrical or asymmetrical) and fill factor. Therefore, sufficient iterations are ensured in each trial to effectively help the algorithm avoid trapping. The other point is that when MIFT is performed, the array elements are gradually truncated, which maintains the most useful element excitations while maximally excludes the bad excitations, so that the optimum solution could be obtained through only a small number of trials and thereby substantially save computational cost. The effectiveness of MIFT will be demonstrated for various linear arrays and compared with the published reports.
Citation
Xin-Kuan Wang Yong-Chang Jiao Yan Yan Tan , "Gradual Thinning Synthesis for Linear Array Based on Iterative Fourier Techniques," Progress In Electromagnetics Research, Vol. 123, 299-320, 2012.
doi:10.2528/PIER11100903
http://www.jpier.org/PIER/pier.php?paper=11100903
References

1. Ayestarán, R. G., J. Laviada, and F. Las-Heras, "Realistic antenna array synthesis in complex environments using a mom-svr approach," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 97-108, 2009.
doi:10.1163/156939309787604670

2. Orchard, H. J., R. S. Elliott, and G. J. Stern, "Optimising the synthesis of shaped beam antenna patterns," IEE Proceedings, Vol. 132, No. 1, 63-68, 1985.

3. Franceschetti, G., G. Mazzarella, and G. Panariello, "Array synthesis with excitation constraints," IEE Proceedings, Vol. 135, No. 6, 400-407, 1988.

4. Wang, W.-B., Q. Y. Feng, and D. Liu, "Application of chaotic particle swarm optimization algorithm to pattern synthesis of antenna arrays," Progress In Electromagnetics Research, Vol. 115, 173-189, 2011.

5. Liu, D., Q. Y. Feng, W.-B. Wang, and X. Yu, "Synthesis of unequally spaced antenna arrays by using inheritance learning particle swarm optimization," Progress In Electromagnetics Research, Vol. 118, 205-221, 2011.
doi:10.2528/PIER11050502

6. Zaharis, Z. D. and T. V. Yioultsis, "A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated boolean PSO," Progress In Electromagnetics Research, Vol. 117, 165-179, 2011.

7. Carro Ceballos, P. L., J. de. Mingo Sanz, and P. G. Dúcar, "Radiation pattern synthesis for maximum mean effective gain with spherical wave expansions and particle swarm techniques," Progress In Electromagnetics Research, Vol. 103, 355-370, 2010.
doi:10.2528/PIER10031808

8. Zaharis, Z. D., S. K. Goudos, and T. V. Yioultsis, "Application of Boolean PSO with adaptive velocity mutation to the design of optimal linear antenna arrays excited by uniformamplitude current distribution," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 10, 1422-1436, 2011.

9. Khodier, M. M. and C. G. Christodoulou, "Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization," IEEE Trans. on Antennas and Propag., Vol. 53, No. 8, 2674-2679, 2005.
doi:10.1109/TAP.2005.851762

10. Lanz Diego, M., J. R. Pérez Lopez, and J. Basterrechea, "Synthesis of planar arrays using a modified particle swarm optimization algorithm by introducing a selection operator and elitism," Progress In Electromagnetics Research, Vol. 93, 145-160, 2009.
doi:10.2528/PIER09041303

11. Li, W.-T., X.-W. Shi, and Y.-Q. Hei, "An improved particle swarm optimization algorithm for pattern synthesis of phased arrays," Progress In Electromagnetics Research, Vol. 82, 319-332, 2008.
doi:10.2528/PIER08030904

12. Mahanti, G. K., A. Chakrabarty, and S. Das, "Phase-only and amplitude phase synthesis of dual-pattern linear antenna arrays using floating-point genetic algorithms," Progress In Electromagnetics Research, Vol. 68, 247-259, 2007.
doi:10.2528/PIER06072301

13. Chen, K. S., Z. S. He, and C. L. Han, "A modified real GA for the sparse linear array synthesis with multiple constraints," IEEE Trans. on Antennas and Propag., Vol. 54, No. 7, 2169-2173, 2006.
doi:10.1109/TAP.2006.877211

14. Li, F., Y.-C. Jiao, L.-S. Ren, Y.-Y. Chen, and L. Zhang, "Pattern synthesis of concentric ring array antennas by differential evolution algorithm," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2--3, 421-430, 2011.
doi:10.1163/156939311794362777

15. Mallipeddi, R., J. P. Lie, P. N. Suganthan, S. G. Razul, and C. M. S. See, "A differential evolution approach for robust adaptive beamforming based on joint estimation of look direction and array geometry," Progress In Electromagnetics Research, Vol. 119, 381-394, 2011.
doi:10.2528/PIER11052205

16. Li, R., L. Xu, X.-W. Shi, N. Zhang, and Z.-Q. Lv, "Improved differential evolution strategy for antenna array pattern synthesis problems," Progress In Electromagnetics Research, Vol. 113, 429-441, 2011.

17. Rodriguez, J. A., F. Ares, and E. Moreno, "Linear array pattern synthesis optimizing array element excitations using the simulated annealing technique," Microwave Opt. Technol. Lett., Vol. 23, No. 4, 224-226, 1999.
doi:10.1002/(SICI)1098-2760(19991120)23:4<224::AID-MOP10>3.0.CO;2-M

18. Caorsi, S., et al., "Peak sidelobe level reduction with a hybrid approach based on GAs and difference sets," IEEE Trans. on Antennas and Propag., Vol. 52, No. 4, 1116-1121, 2004.
doi:10.1109/TAP.2004.825689

19. Pérez Lopez, J. R. and J. Basterrechea, "Hybrid particle swarm-based algorithms and their application to linear array synthesis," Progress In Electromagnetics Research, Vol. 90, 63-74, 2009.
doi:10.2528/PIER08122212

20. Donelli, M., et al., "Linear antenna synthesis with a hybrid genetic algorithm," Progress In Electromagnetics Research, Vol. 49, 1-22, 2004.
doi:10.2528/PIER03121301

21. Rajo-Iglesias, E. and Ó. Quevedo-Teruel, "Linear array synthesis using an ant colony optimization based algorithm," IEEE Antennas and Propagation Magazine, Vol. 49, No. 2, 70-79, 2007.
doi:10.1109/MAP.2007.376644

22. Liu, Y., Z.-P. Nie, and Q. H. Liu, "A new method for the synthesis of non-uniform linear arrays with shaped power patterns," Progress In Electromagnetics Research, Vol. 107, 349-363, 2010.
doi:10.2528/PIER10060912

23. Dib, N. I., S. K. Goudos, and H. Muhsen, "Application of taguchi's optimization method and self-adaptive differential evolution to the synthesis of linear antenna arrays," Progress In Electromagnetics Research, Vol. 102, 159-180, 2010.
doi:10.2528/PIER09122306

24. Li, G., S. Yang, M. huang, and Z. Nie, "Sidelobe suppression in time modulated linear arrays with unequal element spacing," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5--6, 775-783, 2010.
doi:10.1163/156939310791036368

25. Fondevila, J., et al., "Optimizing uniformly excited linear arrays through time modulation," IEEE Antennas and Wireless Propag. Lett., Vol. 3, 298-301, 2004.
doi:10.1109/LAWP.2004.838833

26. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans.on Antennas and Propag., Vol. 42, No. 7, 993-999, 993.
doi:10.1109/8.299602

27. Fernández-Delgado, M., J. A. Rodríguez-González, R. Iglesias, S. Barro, and F. J. Ares-Pena, "Fast array thinning using global optimization methods," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2259-2271, 2010.
doi:10.1163/156939310793699136

28. Wang, J., B. Yang, S. H. Wu, and J. Chen, "A novel binary particle swarm optimization with feedback for synthesizing thinned planar arrays," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14--15, 1985-1998, 2011.
doi:10.1163/156939311798071965

29. Bucci, O. M., T. Isernia, and A. F. Morabito, "A deterministic approach to the synthesis of pencil beams through planar thinned arrays," Progress In Electromagnetics Research, Vol. 101, 217-230, 2010.
doi:10.2528/PIER10010104

30. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multi-objective implementations," IEEE Trans. on Antennas and Propag., Vol. 55, No. 3, 556-567, 2007.
doi:10.1109/TAP.2007.891552

31. Mahanti, G. K., N. N. Pathak, and P. K. Mahanti, "Synthesis of thinned linear antenna arrays with fixed sidelobe level using real-coded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
doi:10.2528/PIER07061304

32. Quevedo-Teruel, Ó. and E. Rajo-Iglesias, "Ant colony optimization in thinned array synthesis with minimum sidelobe level," IEEE Antennas and Wireless Propag. Lett., Vol. 5, 349-352, 2006.
doi:10.1109/LAWP.2006.880693

33. Keizer, W. P. M. N., "Linear array thinning using iterative FFT techniques," IEEE Trans. on Antennas and Propag., Vol. 56, No. 8, 2757-2760, 2008.
doi:10.1109/TAP.2008.927580

34. Keizer, W. P. M. N., "Element failure correction for a large monopulse phased array antenna with active amplitude weighting," IEEE Trans. on Antennas and Propag., Vol. 55, No. 8, 2211-2218, 2007.
doi:10.1109/TAP.2007.902008

35. Keizer, W. P. M. N., "Low sidelobe patterns synthesis using iterative fourier techniques coded in MATLAB," IEEE Antennas and Propagation Magazine, Vol. 51, No. 2, 137-150, 2009.
doi:10.1109/MAP.2009.5162038

36. Bucci, O. M., G. D'Elia, G. Mazzarella, and G. Panariello, "Antenna pattern synthesis: A new general approach," Proceedings of the IEEE, Vol. 82, No. 3, 358-371, 1994.
doi:10.1109/5.272140

37. Quijano, J. L. A. and G. Vecchi, "Alternating adaptive projections in antenna synthesis," IEEE Trans. on Antennas and Propag., Vol. 58, No. 3, 727-737, 2010.
doi:10.1109/TAP.2009.2039307

38. Proakis, J. G. and D. G. Manolakis, Digital Signal Processing Principles, Algorithms, and Applications, 4th Ed., 449-459, Publishing House of Electronics Industry, Beijing, 2007.