1. Garcia-Donoro, D., I. Martinez-Fernandez, L. E. Garcia-Castillo, Y. Zhang, and T. K. Sarkar, "RCS computation using a parallel incore and out-of-core direct solver," Progress In Electromagnetics Research, Vol. 118, 505-525, 2011.
doi:10.2528/PIER11052611 Google Scholar
2. Klement, D., J. Preissner, and V. Stein, "Special problems in applying the physical optics method for backscatter computation of complicated objects," IEEE Trans. on Antennas Propag., Vol. 36, No. 2, 228-237, 1988.
doi:10.1109/8.1100 Google Scholar
3. Ling, H., R. C. Chou, and S. W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity," IEEE Trans. on Antennas Propag., Vol. 37, No. 2, 194-205, 1989.
doi:10.1109/8.18706 Google Scholar
4. Suk, S.-H., T.-I. Seo, H.-S. Park, and H.-T. Kim, "Multiresolution grid algorithm in the SBR and its application to the RCS calculation," Microw. Opt. Tech. Lett., Vol. 29, No. 6, 394-397, 2001.
doi:10.1002/mop.1188 Google Scholar
5. Gao, P. C., Y. B. Tao, and H. Lin, "Fast RCS prediction using multiresolution shooting and bouncing ray method on the GPU," Progress In Electromagnetics Research, Vol. 107, 187-202, 2010.
doi:10.2528/PIER10061807 Google Scholar
6. Park, H.-G., H.-T. Kim, and K.-T. Kim, "Beam tracing for fast RCS prediction of electrically large targets," Progress In Electromagnetics Research M, Vol. 20, 29-42, 2011.
doi:10.2528/PIERM11060702 Google Scholar
7. Tao, Y. B., H. Lin, and H. J. Bao, "Adaptive aperture partition in shooting and bouncing ray method," IEEE Trans. on Antennas Propag., Vol. 59, No. 9, 3347-3357, 2011.
doi:10.1109/TAP.2011.2161435 Google Scholar
8. Heckbert, P. S. and P. Hanrdahan, "Beam tracing polygonal objects," Computer Graphics (Proc. SIGGRAPH), Vol. 18, No. 3, 119-127, 1984.
doi:10.1145/964965.808588 Google Scholar
9. Teh, C. H. and H. T. Chuah, "An improved image-based propagation model for indoor and outdoor communication channels," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 1, 31-50, 2003.
doi:10.1163/156939303766975335 Google Scholar
10. Chung, B. K., C. H. Teh, and H. T. Chuah, "Modeling of anechoic chamber using a beam-tracing technique," Progress In Electromagnetics Research, Vol. 49, 23-38, 2004.
doi:10.2528/PIER04020601 Google Scholar
11. Di Giampaolo, E., M. Sabbadini, and F. Bardati, "Astigmatic beam tracing for GTD/UTD methods in 3-D complex environments," Journal of Electromagnetic Waves and Applications, Vol. 15, 439-460, 2001.
doi:10.1163/156939301X00733 Google Scholar
12. Di Giampaolo, E. and F. Bardati, "A projective approach to electromagnetic propagation in complex environments," Progress In Electromagnetics Research B, Vol. 13, 357-383, 2009.
doi:10.2528/PIERB09012904 Google Scholar
13. Havran, V. and J. Bittner, "On improving kd-trees for ray shooting," Proceedings of WSCG'2002 Conference, 209-217, 2002. Google Scholar
14. Tao, Y. B., H. Lin, and H. J. Bao, "KD-tree based fast ray tracing for RCS prediction," Progress In Electromagnetics Research, Vol. 81, 329-341, 2008.
doi:10.2528/PIER08011305 Google Scholar
15. Glassner, A. S., "Space subdivision for fast ray tracing," IEEE Computer Graphics and Applications, Vol. 4, No. 10, 15-22, 1984. Google Scholar
16. Jin, K.-S., T.-I. Suh, S.-H. Suk, B.-C. Kim, and H.-T. Kim, "Fast ray tracing using a space-division algorithm for RCS prediction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 119-126, 2006.
doi:10.1163/156939306775777341 Google Scholar
17. Bang, J.-K., B.-C. Kim, S.-H. Suk, K.-S. Jin, and H.-T. Kim, "Time consumption reduction of ray tracing for RCS prediction using efficient grid division and space division algorithms," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 829-840, 2007.
doi:10.1163/156939307780749129 Google Scholar
18. Catedra, M. F., J. Perez, F. S. de Adana, and O. G. Blanco, "Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: Application to picocell and microcell scenarios," IEEE Antennas Propag. Mag., Vol. 40, 15-28, 1998.
doi:10.1109/74.683539 Google Scholar
19. De Adana, F. S., O. G. Blonco, I. G. Diego, J. P. Arriaga, and M. F. Catedra, "Propagation model based on ray tracing for the design of personal communication systems in indoor environments," IEEE Trans. on Antennas Propag., Vol. 49, No. 6, 2105-2112, 2000. Google Scholar
20. Saeidi, C. and F. Hodjatkashani, "Modified angular z-buffer as an acceleration technique for ray tracing," IEEE Trans. on Antennas Propag., Vol. 58, No. 5, 1822-1825, 2010.
doi:10.1109/TAP.2010.2044342 Google Scholar
21. Kim, B.-C., K.-K. Park, and H.-T. Kim, "Efficient RCS prediction method using angular division algorithm," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 65-74, 2009.
doi:10.1163/156939309787604625 Google Scholar
22. Park, K.-K. and H.-T. Kim, "RCS prediction acceleration and reduction of table size for the angular division algorithm," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1657-1664, 2009. Google Scholar
23. Sedaghat Alvar, N., A. Ghorbani, and H. Amindavar, "A novel hybrid approach to ray tracing acceleration based on preprocessing & bounding volumes," Progress In Electromagnetics Research, Vol. 82, 19-32, 2008.
doi:10.2528/PIER08013007 Google Scholar
24. Sarker, M. S., A. W. Reza, and K. Dimyati, "A novel ray-tracing technique for indoor radio signal prediction," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8--9, 1179-1190, 2011.
doi:10.1163/156939311795762222 Google Scholar
25. Kim, H. and H.-S. Lee, "Accelerated three dimensional ray tracing techniques using ray frustums for wireless propagation models," Progress In Electromagnetics Research, Vol. 96, 21-36, 2009.
doi:10.2528/PIER09072303 Google Scholar
26. Liu, Z.-Y. and L.-X. Guo, "A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments," Progress In Electromagnetics Research, Vol. 118, 397-414, 2011.
doi:10.2528/PIER11041602 Google Scholar
27. Reza, A. W., M. S. Sarker, and K. Dimyati, "A novel integrated mathematical approach of ray-tracing and genetic algorithm for optimizing indoor wireless coverage," Progress In Electromagnetics Research, Vol. 110, 147-162, 2010.
doi:10.2528/PIER10091701 Google Scholar
28. Gao, P. C., Y. B. Tao, Z. H. Bai, and H. Lin, "Mapping the SBR and TW-ILDCS to heterogeneous CPU-GPU architecture for fast computation of electromagnetic scattering," Progress In Electromagnetics Research, Vol. 122, 137-154, 2012.
doi:10.2528/PIER11092303 Google Scholar
29. Usai, P., A. Corucci, S. Genovesi, and A. Monorchio, "Arbitrary voxel selection for accelerating a ray tracing-based field prediction model in urban environments," Progress In Electromagnetics Research C, Vol. 20, 43-53, 2011. Google Scholar
30. Haarscher, A., P. de Doncker, and D. Lautru, "Uncertainty propagation and sensitivity analysis in ray-tracing simulations," Progress In Electromagnetics Research M, Vol. 21, 149-161, 2011.
doi:10.2528/PIERM11090103 Google Scholar
31. Lim, H., J.-H. Park, J.-H. Yoo, C.-H. Kim, K. Kwon, and N.-H. Myung, "Joint time-frequency analysis of radar micro-doppler signatures from aircraft engine models," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8--9, 1069-1080, 2011.
doi:10.1163/156939311795762006 Google Scholar
32. Lim, H. and N.-H. Myung, "High resolution range profile-jet engine modulation analysis of aircraft models," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8--9, 1092-1102, 2011.
doi:10.1163/156939311795762088 Google Scholar
33. Gomez, J., A. Tayebi, F. M. Saez de Adana, and O. Gutierrez, "Localization approach based on ray-tracing including the effect of human shadowing," Progress In Electromagnetics Research Letters, Vol. 15, 1-11, 2010.
doi:10.2528/PIERL10030908 Google Scholar
34. Zhang, Z. and W.-B. Dou, "A compact THz scanning imaging system based on improved reverse-microscope system," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1045-1057, 2010.
doi:10.1163/156939310791585954 Google Scholar
35. Buddendick, H. and T. F. Eibert, "Bistatic image formation from shooting and bouncing rays simulated current distributions," Progress In Electromagnetics Research, Vol. 119, 1-18, 2011.
doi:10.2528/PIER11060212 Google Scholar