1. AlShehri, S. A., S. Khatun, A. B. Jantan, R. S. A. Raja Abdullah, R. Mahmood, and Z. Awang, "Experimental breast tumor detection using Nn-based UWB imaging," Progress In Electromagnetics Research, Vol. 111, 447-465, 2011.
doi:10.2528/PIER10110102 Google Scholar
2. Lazaro, A., D. Girbau, and R. Villarino, "Analysis of vital signs monitoring using an IR-UWB radar," Progress In Electromagnetics Research, Vol. 100, 265-284, 2010.
doi:10.2528/PIER09120302 Google Scholar
3. AlShehri, S. A., S. Khatun, A. B. Jantan, R. S. A. Raja Abdullah, R. Mahmood, and Z. Awang, "3D experimental detection and discrimination of malignant and benign breast tumor using Nn-based UWB imaging," Progress In Electromagnetics Research, Vol. 116, 221-237, 2011. Google Scholar
4. Fullerton, L. W., Spread spectrum radio transmission system, US Patent 4,641,317, 1987.
5. McEwan, T. E., Ultra-wideband radar motion sensor, US Patent 5,361,070, 1994.
6. Daniels, D. J. and I. O. E. Engineers, Ground Penetrating Radar, IET, 2004.
7. Mink, J. W., "Quasi-optical power combining of solid state millimeter-wave sources," IEEE Trans. Microw. Theory Tech., Vol. 34, 273-279, 1986.
doi:10.1109/TMTT.1986.1133322 Google Scholar
8. Kim, M., et al. "A grid amplifier," IEEE Microw. Guided Wave Lett., Vol. 1, 322-324, 1991.
doi:10.1109/75.93899 Google Scholar
9. Cheung, C. T., M. P. De Lisio, J. J. Rosenberg, R. Tsai, R. Kagiwada, and D. B. Rutledge, "A single chip two-stage W-band grid amplifier," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 1, 79-82, 2004. Google Scholar
10. Russo, I., L. Boccia, G. Amendola, G. Di Massa, and P. S. Hall, "Simple model for the parametric analysis of grid amplifiers," IET Microw., Ant. Prop., Vol. 3, No. 5, 877-881, Aug. 2009.
doi:10.1049/iet-map.2008.0252 Google Scholar
11. Tsai, H. S., M. J. W. Rodwell, and R. A. York, "Planar amplifier array with improved bandwidth using folded slots," IEEE Microw. Guided Wave Lett., Vol. 4, 112-114, 1994.
doi:10.1109/75.282576 Google Scholar
12. Marshall, T., M. Forman, and Z. Popovic, "Two Ka-band quasi-optical amplifier arrays," IEEE Trans. Microw. Theory Tech., Vol. 47, 2568-2573, 1999.
doi:10.1109/22.809008 Google Scholar
13. Ortiz, S. C., J. Hubert, L. Mirth, E. Schlecht, and A. Mortazawi, "A high-power Ka-band quasi-optical amplifier array," IEEE Trans. Microw. Theory Tech., Vol. 50, 487-494, 2002.
doi:10.1109/22.982228 Google Scholar
14. Russo, I., L. Boccia, G. Amendola, and G. Di Massa, "Simplified design flow of quasi-optical slot amplifiers," Progress In Electromagnetics Research, Vol. 96, 347-359, 2009.
doi:10.2528/PIER09072807 Google Scholar
15. Bundy, S. C. and Z. B. Popovic, "A generalized analysis for grid oscillator design," IEEE Trans. Microw. Theory Tech., Vol. 42, 2486-2491, 1994.
doi:10.1109/22.339786 Google Scholar
16. Deckman, B., D. Rutledge, J. J. Rosenberg, E. Sovero, D. S. Deakin, and Jr., "A 1watt 38 GHz monolithic grid oscillator," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 3, 1843-1845, 2001. Google Scholar
17. Zhang, G., H. Zhang, Z. Wang, and Z. Yuan, "Improvements in a 4-elements high gain directional UWB antenna array," J. Electromagn. Waves and Appl., Vol. 24, No. 4, 453-461, 2010. Google Scholar
18. Song, H., M. Bialkowski, and P. Kabacik, "Parameter study of a broadband uniplanar quasi-Yagi antenna," 13th Int. Conf. Microw., Radar Wireless Commun., MIKON, Vol. 1, 166-169, 2000. Google Scholar
19. Cheng, N.-S., P. Jia, D. B. Rensch, and R. A. York, "A 120-watt X-band spatially combined solid-state amplifier," IEEE Trans. Microw. Theory Tech., Vol. 47, 2557-2561, Dec. 1999.
doi:10.1109/22.809006 Google Scholar
20. Alexanian, A. and R. A. York, "Broadband waveguide-based spatial combiner," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 3, 1139-1142, 1997.
21. Jia, P., L. Y. Chen, A. Alexanian, and R. York, "Multioctave spatial power combining in oversized coaxial waveguide," IEEE Trans. Microw. Theory Tech., Vol. 50, 1355-1360, 2002. Google Scholar
22. Wu, K., D. Deslandes, and Y. Cassivi, "The substrate integrated circuits --- a new concept for high-frequency electronics and optoelectronics," 6th Int. Conf. Telecommun. Modern Satell., Cable Broadcast. Service, TELSIKS, Vol. 1, P-III-P-X, 2003. Google Scholar
23. Hu, G., C.-J. Liu, L. Yan, K.-M. Huang, and W. Menzel, "Novel dual mode substrate integrated waveguide band-pass filters," J. Electromagn. Waves and Appl., Vol. 24, No. 11-12, 1661-1672, 2010.
doi:10.1163/156939310792149768 Google Scholar
24. Chen, T., "Determination of the capacitance, inductance, and characteristic impedance of rectangular lines," IEEE Trans. Microw. Theory Tech., Vol. 8, No. 5, 510-519, 1960.
doi:10.1109/TMTT.1960.1124779 Google Scholar
25. CST Microwave Studior, CST Computer Simulation Tech. AG.
26. Shin, J. and D. Schaubert, "A parameter study of stripline-fed Vivaldi notch-antenna arrays," IEEE Trans. Antennas Propag., Vol. 47, No. 5, 879-886, 1999.
doi:10.1109/8.774151 Google Scholar
27. Agilent ADSr, Agilent Technologies Inc..