Vol. 122
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-12-06
Electromagnetic Optimal Design for Dual-Band Radome Wall with Alternating Layers of Staggered Composite and Kagome Lattice Structure
By
Progress In Electromagnetics Research, Vol. 122, 437-452, 2012
Abstract
In this paper, electromagnetic optimal design is carried out for dual-band radome wall with alternating layers of staggered composite and Kagome lattice structure. The novel wall structure provides broadband transmission capability, along with excellent thermal-elastic properties and mechanical performances for high temperature applications. By optimizing the layer number (n) and the thickness of the whole wall (d), the power transmission efficiency of the novel structure in the frequency range of 1-100 GHz is calculated via boundary value method (BVM) based on electromagnetic theory. The calculation results suggest that if the wall thickness is dimensioned to be 6 mm and the wall structure is designed as 5 layers, the novel structure demonstrates excellent transmission performance. The optimal design results show that the power transmission efficiency is higher than 80% from 1 to 31 GHz in the centimeter wave range and from 59 to 100 GHz in the millimeter wave range, and the average transmission efficiency over the pass band reaches as high as 91%.
Citation
Yongmao Pei, Anmin Zeng, Licheng Zhou, Rubing Zhang, and Kuixue Xu, "Electromagnetic Optimal Design for Dual-Band Radome Wall with Alternating Layers of Staggered Composite and Kagome Lattice Structure," Progress In Electromagnetics Research, Vol. 122, 437-452, 2012.
doi:10.2528/PIER11101906
References

1. Kozakoff, D. J., Analysis of Radome Enclosed Antennas, Artech House, Norwood, MA, 1997.

2. Persson, K., M. Gustafsson, and G. Kristensson, "Reconstruction and visualization of equivalent currents on a radome using an integral representation formulation," Progress In Electromagnetics Research B, Vol. 20, 65-90, 2008.
doi:10.2528/PIERB10012109        Google Scholar

3. Sukharevsky, O. I. and V. A. Vasilets, "Scattering of reflector an tenna with conic dielectric radome," Progress In Electromagnetics Research B, Vol. 4, 159-169, 2008.
doi:10.2528/PIERB08011404        Google Scholar

4. Mackenzie, S. B., "Radome wall design having broadband and mm-wave characteristics,", US Pat, 5408244, Apr. 18, 1995 .        Google Scholar

5. Chen, F., Q. Shen, and L. Zhang, "Electromagnetic optimal design and preparation of broadband ceramic radome material with graded porous structure," Progress In Electromagnetics Research, Vol. 105, 445-461, 2010.
doi:10.2528/PIER10012005        Google Scholar

6. Sunil, S., K. S. Venu, S. M. Vaitheeswaran, and U. Raveendranath, "A modified expression for determining the wall thickness of monolithic half-wave radomes," Microw. Opt. Techn. Lett., Vol. 30, No. 5, 350-352, 2001.
doi:10.1002/mop.1311        Google Scholar

7. Kedar, A. and U. K. Revankar, "Parametric study of flat sandwich multilayer radome," Progress In Electromagnetics Research, Vol. 66, 253-265, 2006.
doi:10.2528/PIER06111202        Google Scholar

8. Kedar, A., K. S. Beenamole, and U. K. Revankar, "Performance appraisal of active phased array antenna in presence of a multilayer flat sandwich radome," Progress In Electromagnetics Research, Vol. 66, 157-171, 2006.
doi:10.2528/PIER06111203        Google Scholar

9. Rudge, A. W., G. A. E. Crone, and J. Summers, "Radome design and performance: A review," Proceedings of 2nd military microwaves Conference, London, Oct. 1981.        Google Scholar

10. Tice, T. E., "Techniques for airborne radome design,", USAF Report AFATL-TR-66-391, 1966.        Google Scholar

11. Crone, G., A. Rudge, and G. Taylor, "Design and performance of airborne radomes: A review," IEE Proceedings F on Communications, Radar and Signal Processing, Vol. 128, No. 7, 451-464, 1981.
doi:10.1049/ip-f-1.1981.0077        Google Scholar

12. Mackenzie, S. B. and D. W. Stressing, "W-band and X-band radome wall,", US Pat, 6028565, Feb. 22, 2000.        Google Scholar

13. Wang, C. A., Y. Huang, Q. Zan, H. Guo, and S. Cai, "Control of composition and structure in laminated silicon nitride/boron nitride composites," Journal of the American Ceramic Society, Vol. 85, No. 10, 2457-2461, 2002.
doi:10.1111/j.1151-2916.2002.tb00480.x        Google Scholar

14. Ji, B. and H. Gao, "Mechanical properties of nanostructure of biological materials," Journal of the Mechanics and Physics of Solids, Vol. 52, No. 9, 1963-1990, 2004.
doi:10.1016/j.jmps.2004.03.006        Google Scholar

15. Yang, F., D. N. Fang, and B. Liu, "Thermal-elastic behaviors of staggered composites," International Journal of Applied Mechanics, Vol. 1, No. 4, 569-580, 2009.
doi:10.1142/S1758825109000319        Google Scholar

16. Hyun, S. and S. Torquato, "Optimal and manufacturable two-dimensional, Kagome-like cellular solids," Journal of Materials Research, Vol. 17, No. 1, 137-144, 2002.
doi:10.1557/JMR.2002.0021        Google Scholar

17. Sihvola, A., Electromagnetic Mixing Formulas and Applications, IEE Electromagnetic Waves Series, Vol. 47, UK, 1999.
doi:10.1049/PBEW047E

18. Garnett, J. C. M., "Colours in metal glasses and in metallic films ," Transactions of the Royal Society, Vol. CCIII, 385-420, London, 1904.        Google Scholar

19. Tuncer, E., Y. V. Serdyuk, and S. M. Gubalski, "Dielectric mixtures: Electrical properties and modeling," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 9, No. 5, 809-828, 1935.
doi:10.1109/TDEI.2002.1038664        Google Scholar

20. Holloway, C. L. and E. F. Kuester, "A low-frequency model for wedge or pyramid absorber arrays-II: Computed and measured results ," IEEE Transactions on Electromagnetic Compatibility, Vol. 36, No. 4, 307-313, 1994.
doi:10.1109/15.328860        Google Scholar

21. Holloway, C. L., P. McKenna, and R. DeLyser, "A numerical investigation on the accuracy of the use of homogenization for analyzing periodic absorbing arrays,", 296-298, URSI, St. Petersburg, Russia, 1995.        Google Scholar

22. Kanaun, S. K. and D. Jeulin, "The influence of spatial distributions of inhomogeneities on effective dielectric properties of composite materials," Progress In Electromagnetics Research, Vol. 2, 51-84, 1999.
doi:10.2528/PIER98080703        Google Scholar

23. Sun, W., K. Liu, and C. A. Balanis, "Analysis of singly and doubly periodic absorbers by frequency-domain finite-difference method," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 6, 798-805, 1996.
doi:10.1109/8.509883        Google Scholar

24. Jylha, L. and A. Sihvola, "Approximations and full numerical simulations for the conductivity of three dimensional checkerboard geometries," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 13, No. 4, 760-764, 2006.
doi:10.1109/TDEI.2006.1667733        Google Scholar

25. Shen, Z. J., Z. Zhao, H. Peng, et al. "Formation of tough interlocking microstructures in silicon nitrideceramics by dynamic ripening," Nature, Vol. 417, 266-269, 2002.
doi:10.1038/417266a        Google Scholar

26. Peterson, I. M. and T. Y. Tien, "Effect of the grain boundary thermal expansion coe±cient on the fracture toughness in silicon nitride," J. Am. Ceram. Soc., Vol. 78, No. 9, 2345-2352, 1995.
doi:10.1111/j.1151-2916.1995.tb08667.x        Google Scholar

27. Riley, F. L., "Silicon nitride and related materials," J. Am. Ceram. Soc., Vol. 83, No. 2, 245-265, 2000.
doi:10.1111/j.1151-2916.2000.tb01182.x        Google Scholar

28. Wang, H., Y. Huang, Q. F. Zhang, and H. Guo, "Biomimetic structure design-a possible approach to change the brittleness of ceramics in nature," Materials Science and Engineering C, Vol. 11, 9-12, 2000.
doi:10.1016/S0928-4931(00)00133-8        Google Scholar

29. Johansson, M., C. L. Holloway, and E. F. Kuester, "Effective electromagnetic properties of honeycomb composites, and hollow-pyramidal and alternating-wedge absorbers," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 2, 728-736, 2005.
doi:10.1109/TAP.2004.841320        Google Scholar

30. Han, D. and S. W. Tsai, "Interlocked composite grids design and manufacturing," Journal of Composite Materials, Vol. 37, No. 4, 287-316, 2003.
doi:10.1177/0021998303037004681        Google Scholar

31. Kim, T. D. and Compos. Struct., "Fabrication and testing of thin composite isogrid stiffened panel,", Vol. 49, No. 1, 21-25, 2000.        Google Scholar

32. Collin, R. E. and H. Chang, "Field theory of guided waves," Physics Today, McGraw-Hill, 1961.        Google Scholar

33. Orfanidis, S. J., "Electromagnetic waves and antennas,", Rutgers University, NJ, 2009.        Google Scholar

34. Ziolkowski, F., "Lightweight c-sandwich radome fabrication,", US Patent, 7463212, Dec. 9, 2008.        Google Scholar

35. Meng, H. F. and W. B. Dou, "A hybrid method for the analysis of radome-enclosed horn antenna," Progress In Electromagnetics Research, Vol. 90, 213-233, 2009.        Google Scholar

36. Lee, H. S., "Prediction of radome bore-sight errors using a projected image of source distributions," Progress In Electromagnetics Research, Vol. 92, 181-194, 2009.
doi:10.2528/PIER09033105        Google Scholar

37. Meng, H. F. and W. B. Dou, "Fast analysis of electrically large radome in millimeter wave band with fast multipole acceleration," Progress In Electromagnetics Research, Vol. 120, 371-385, 2011.        Google Scholar

38. Eibert, T. F., Ismatullah, E. Kaliyaperumal, and C. H. Schmidt, "Inverse equivalent surface current method with hierarchical higher order basis functions, full probe correction and multi-level fast multipole acceleration," Progress In Electromagnetics Research, Vol. 106, 377-394, 2010.
doi:10.2528/PIER10061604        Google Scholar

39. Quijano, J. L. A. and G. Vecchi, "Field and source equivalence in source reconstruction on 3D surfaces," Progress In Electromagnetics Research, Vol. 103, 67-100, 2010.
doi:10.2528/PIER10030309        Google Scholar