Vol. 123
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-12-11
Generalized Equivalent Cable Bundle Method for Modeling EMC Issues of Complex Cable Bundle Terminated in Arbitrary Loads
By
Progress In Electromagnetics Research, Vol. 123, 13-30, 2012
Abstract
A generalized equivalent cable bundle method (GECBM) is presented for modeling electromagnetic (EM) compatibility issues of complex cable bundle terminated in arbitrary loads. By introducing a new grouping criterion, complex cable bundles terminated in arbitrary loads can be reasonably simplified through a generalized equivalence procedure. The reduced cable bundle model can be used for modeling electromagnetic immunity, emission and crosstalk problems. The complexity and the computation time for the complete cable bundle modeling has been significantly reduced and fairly good precision is maintained. Numerical simulations are given to validate the efficiency and advantages of the method.
Citation
Zhuo Li Liang Liang Liu Chang Qing Gu , "Generalized Equivalent Cable Bundle Method for Modeling EMC Issues of Complex Cable Bundle Terminated in Arbitrary Loads," Progress In Electromagnetics Research, Vol. 123, 13-30, 2012.
doi:10.2528/PIER11102601
http://www.jpier.org/PIER/pier.php?paper=11102601
References

1. Paul, C. R., Analysis of Multiconductor Transmission Lines, Wiley-Interscience, New York, 1994.

2. Paul, C. R., "Frquency response of multiconductor transmission lines illuminated by an electromagnetic field," IEEE Trans. on Electromagn. Compat., Vol. 18, No. 4, 183-190, Nov. 1976.
doi:10.1109/TEMC.1976.303499

3. Kami, Y. and R. Sato, "Transient response of a transmission line excited by an electromagnetic pulse," IEEE Trans. on Electromagn. Compat., No. 30, 457-462, Nov. 1988.

4. Lin, D.-B., F.-N. Wu, W. S. Liu, C. K. Wang, and H.-Y. Shih, "Crosstalk and discontinuities reduction on multi-module memory bus by particle swarm optimization," Progress In Electromagnetics Research, Vol. 121, 53-74, 2011.
doi:10.2528/PIER11080302

5. Xie, H., J. Wang, D. Sun, R. Fan, and Y. Liu, "Spice simulation and experimental study of transmission lines with TVSs excited by EMP," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2--3, 401-411, 2010.
doi:10.1163/156939310790735543

6. Koo, S.-K., H.-S. Lee, and Y. B. Park, "Crosstalk reduction effect of asymmetric stub loaded lines," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8--9, 1156-1167, 2011.
doi:10.1163/156939311795762204

7. Andrieu, G., A. Reineix, X. Bunlon, J. P. Parmantier, L. Koné, and B. Démoulin, "Extension of the ``equivalent cable bundle method'' for modeling electromagnetic emissions of complex cable bundles," IEEE Trans. on Electromagn. Compat., Vol. 51, No. 1, 108-118, Feb. 2009.
doi:10.1109/TEMC.2008.2007803

8. Orlandi, A. and C. R. Paul, "FDTD analysis of lossy, multiconductor transmission lines terminated in arbitrary loads," IEEE Trans. on Electromagn. Compat., Vol. 38, No. 3, 388-399, Aug. 1996.
doi:10.1109/15.536069

9. Trakadas, P. T. and C. N. Capsalis, "Validation of a modified fdtd method on non-uniform transmission lines," Progress In Electromagnetics Research, Vol. 31, 311-329, 2001.
doi:10.2528/PIER00071705

10. Wang, J., W.-Y. Yin, J.-P. Fang, and Q.-F. Liu, "Transient responses of coaxial cables in an electrically large cabin with slots and windows illuminated by an electromagnetic pulse," Progress In Electromagnetics Research, Vol. 106, 1-16, 2010.
doi:10.2528/PIER10060708

11. Hsu, C.-I. G., R. F. Harrington, K. A. Michalski, and D. Zheng, "Analysis of multiconductor transmission lines of arbitrary cross section in multilayered uniaxial media," IEEE Trans. on Microw. Theory and Tech., Vol. 41, No. 1, 70-78, Jan. 1993.
doi:10.1109/22.210231

12. Pantic, Z. and R. Mittra, "Quasi-TEM analysis of microwave transmission lines by the finite-element method," IEEE Trans. on Microw. Theory and Tech., Vol. 34, No. 11, 1096-1103, Nov. 1986.
doi:10.1109/TMTT.1986.1133505

13. Shamaileh, K. A. A., A. M. Qaroot, and N. I. Dib, "Non-uniform transmission line transformers and their application in the design of compact multi-band Bagley power dividers with harmonics suppression," Progress In Electromagnetics Research, Vol. 113, 269-284, 2011.

14. Bagci, H., A. E. Yilmaz, Jian-Ming Jin, and E. Michielssen, "Fast and rigorous analysis of emc/emi phenomena on electrically large and complex cable-loaded structures," IEEE Trans. on Electromagn. Compat., Vol. 49, No. 2, 361-381, May 2007.
doi:10.1109/TEMC.2007.897159

15. Wu, M., D. G. Beetner, T. H. Hubing, H. X. Ke, and S. S. Sun, "Statistical prediction of ``reasonable worst-case'' crosstalk in cable bundles," IEEE Trans. on Electromagn. Compat., Vol. 51, No. 3, 842-851, Aug. 2009.
doi:10.1109/TEMC.2009.2026740

16. Andrieu, G., L. Koné, F. Bocquet, B. Démoulin, and J. P. Parmantier, "Multiconductor reduction technique for modeling common-mode currents on cable bundles at high frequency for automotive applications," IEEE Trans. on Electromagn. Compat., Vol. 50, No. 1, 175-184, Feb. 2008.
doi:10.1109/TEMC.2007.911914

17. Li, Z., Z. J. Shao, J. Ding, Z. Y. Niu, and C. Q. Gu, "Extension of the ``equivalent cable bundle method'' for modeling crosstalk of complex cable bundles," IEEE Trans. on Electromagn. Compat., Vol. 53, No. 4, 1040-1049, Nov. 2011.
doi:10.1109/TEMC.2011.2146258

18. Andrieu, G., X. Bunlon, L. Koné, J. P. Parmantier, B. Démoulin, and A. Reineix, The `equivalent cable bundle method‘: an efficient multiconductor reduction technique to model industrial cable networks, New Trends and Developments in Automotive System Engineering, InTech, Jan. 2011.