Vol. 123
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-12-29
Improved Performance of Circularly Polarized Antenna Using Semi-Planar Chiral Metamaterial Covers
By
Progress In Electromagnetics Research, Vol. 123, 337-354, 2012
Abstract
The influence of semi-planar chiral metamaterial (CMM) structures on the important characteristics of circularly polarized (CP) antennas is investigated in this paper. Based on this idea, CP planar two-arm Archimedean spiral (ARSPL) antenna and helical antenna are designed and the effects of chiral covers on their gain (or directivity), axial-ratio (AR), and return loss are considered. The results demonstrate that this method is greatly effective and the addition of a semi-planar CMM cover at an optimized distance over the CP antenna, significantly improves its gain and axial ratio.
Citation
Davoud Zarifi, Homayoon Oraizi, and Mohammad Soleimani, "Improved Performance of Circularly Polarized Antenna Using Semi-Planar Chiral Metamaterial Covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.
doi:10.2528/PIER11110506
References

1. Semichaevsky, A. and A. Akyurtlu, "Homogenization of metamaterial-loaded substrates and superstrates for antennas," Progress In Electromagnetics Research, Vol. 71, 129-147, 2007.
doi:10.2528/PIER07021001        Google Scholar

2. Singh, G., "Double negative left-handed metamaterials for miniaturization of rectangular microstrip antenna," Journal of Electromagnetic Analysis & Applications, Vol. 2, 347-351, 2010.
doi:10.4236/jemaa.2010.26044        Google Scholar

3. Lee, J. and Y. Hao, "Characterization of microstrip patch antennas on metamaterial substrates loaded with complementary split-ring resonators," Microwave Opt. Tech. Lett., Vol. 50, No. 8, Aug. 2008.
doi:10.1002/mop.23596        Google Scholar

4. Alu, J., F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength compact, resonant patch antenna loaded with metamaterials," IEEE Trans. Antennas Propag., Vol. 55, No. 1, Jan. 2007.
doi:10.1109/TAP.2006.888401        Google Scholar

5. Li, L.-W., Y.-N. T. S. Yeo, J. R. Mosig, and O. J. F. Martin, "A broadband and high-gain metamaterial microstrip antenna," Appl. Phys. Lett., Vol. 96, 164101, 2010.
doi:10.1063/1.3396984        Google Scholar

6. Chaimool, S., K. L. Chung, and P. Akkaraekthalin, "Simultaneous gain and bandwidths enhancement of a single-feed circularly polarized microstrip patch antenna using a metamaterial reflective surface," Progress In Electromagnetics Research B, Vol. 22, 23-37, 2010.
doi:10.2528/PIERB10031901        Google Scholar

7. Griguer, H., E. Marzolf, H. Lalj, F. Riouch, and M. Drissi, "Patch antenna bandwidth enhancement through the use of metamaterials," International Conference on Telecommunications, 2009, ICT'09, 2009.        Google Scholar

8. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, 2002.
doi:10.1103/PhysRevLett.89.213902        Google Scholar

9. Hu, J., et al. "A new patch antenna with metamaterial cover," Zhejiang University SCIENCE A, Vol. 7, 89-94, 2006.
doi:10.1631/jzus.2006.A0089        Google Scholar

10. Attia, H., L. Yousefi, M. S. Boybay, and O. M. Ramahi, "Enhanced-gain microstrip antenna using engineered magnetic superstrates," IEEE Antennas Propag. Lett., Vol. 8, 2009.        Google Scholar

11. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701        Google Scholar

12. Attia, H., L. Yousefi, and O. M. Ramahi, "Analytical model for calculating the radiation field of microstrip antennas with artificial magnetic superstrates theory and experiment," IEEE Trans. Antennas Propag., Vol. 59, No. 5, May 2011.
doi:10.1109/TAP.2011.2122295        Google Scholar

13. Chen, K.-S., K.-H. Lin, and H.-L. Su, "Microstrip antenna gain enhancement by metamaterial radome with more subwavelength holes," Asia Pacific Microwave Conference, 2009, APMC 2009, 2009.        Google Scholar

14. Xiao, X. and H. Xu, "Low refractive metamaterials for gain enhancement of horn antenna," Journal of Infrared Milli Terahz Waves, Vol. 30, 225-232, 2009.
doi:10.1007/s10762-008-9449-3        Google Scholar

15. Tretyakov, S., I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 695-706, 2003.
doi:10.1163/156939303322226356        Google Scholar

16. Dong, J., "Exotic characteristics of power propagation in the chiral nihility fiber," Progress In Electromagnetics Research, Vol. 99, 163-178, 2009.
doi:10.2528/PIER09102801        Google Scholar

17. Dong, J., J. Li, and F.-Q. Yang, "Guided modes in the four-layer slab waveguide containing chiral nihility core," Progress In Electromagnetics Research, Vol. 112, 241-255, 2011.        Google Scholar

18. Naqvi, A., A. Hussain, and Q. A. Naqvi, "Waves in fractional dual planar waveguides containing chiral nihility metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11--12, 1575-1586, 2010.
doi:10.1163/156939310792149614        Google Scholar

19. Dong, J. F. and C. Xu, "Surface polaritons in planar chiral nihility metamaterial waveguides," Opt. Commun., Vol. 282, 3899-3904, 2009.
doi:10.1016/j.optcom.2009.06.054        Google Scholar

20. Tuz, V. R. and C.-W. Qiu, "Semi-infinite chiral nihility photonics: Parametric dependence, wave tunneling and rejection," Progress In Electromagnetics Research, Vol. 103, 139-152, 2010.
doi:10.2528/PIER10030706        Google Scholar

21. Naqvi, Q. A., "Fractional dual solutions in grounded chiral nihility slab and their effect on outside field," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5--6, 773-784, 2009.
doi:10.1163/156939309788019958        Google Scholar

22. Qamar, S. R., A. Naqvi, A. A. Syed, and Q. A. Naqvi, "Radiation characteristics of elementary sources located in unbounded chiral nihility metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5--6, 713-722, 2011.
doi:10.1163/156939311794827294        Google Scholar

23. Ahmad, S. and Q. A. Naqvi, "Directive EM radiation of a line source in the presence of a coated nihility cylinder," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5--6, 761-771, 2009.
doi:10.1163/156939309788019886        Google Scholar

24. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, 1353-1354, 2004.
doi:10.1126/science.1104467        Google Scholar

25. Mackay, T. G., "Plane waves with negative phase velocity in isotropic chiral mediums," Microwave Opt. Tech. Lett., Vol. 45, No. 2, 120-121, 2005.
doi:10.1002/mop.20742        Google Scholar

26. Zhao, R., T. Koschny, E. N. Economou, and C. M. Soukoulis, "Comparison of chiral metamaterial designs for repulsive Casimir force," Phys. Rev. B, Vol. 81, 235126, 2010.
doi:10.1103/PhysRevB.81.235126        Google Scholar

27. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, 035407, 2009.
doi:10.1103/PhysRevB.79.035407        Google Scholar

28. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B, Vol. 79, 121104, 2009.
doi:10.1103/PhysRevB.79.121104        Google Scholar

29. Li, Z., R. Zhao, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Chiral metamaterials with negative refractive index based on four ``U'' split ring resonators," Appl. Phys. Lett., Vol. 97, 081901, 2010.
doi:10.1063/1.3457448        Google Scholar

30. Wu, Z., B. Q. Zhang, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.
doi:10.1163/156939310791285173        Google Scholar

31. Zhao, R., L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, "Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index," Phys. Rev. B, Vol. 83, 035105, 2011.
doi:10.1103/PhysRevB.83.035105        Google Scholar

32. Li, Z., K. B. Alici, E. Colak, and E. Ozbay, "Complementary chiral metamaterials with giant optical activity and negative refractive index," Appl. Phys. Lett., Vol. 98, 161907, 2011.
doi:10.1063/1.3574909        Google Scholar

33. Li, Z., F.-Q. Yang, and J. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.        Google Scholar

34. Ye, Y. and S. He, "90° polarization rotator using a bilayered chiral metamaterial with giant optical activity," Appl. Phys. Lett., Vol. 96, 203501, 2010.
doi:10.1063/1.3429683        Google Scholar

35. Ye, Y., X. Li, F. Zhuang, and S.-W. Chang, "Homogeneous circular polarizers using a bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 99, 031111, 2011.
doi:10.1063/1.3615054        Google Scholar

36. Illahi, A. and Q. A. Naqvi, "Study of focusing of electromagnetic waves reflected by a PEMC backed chiral nihility reflector using Maslov's method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 863-873, 2009.
doi:10.1163/156939309788355216        Google Scholar

37. Jin, Y. and S. He, "Focusing by a slab of chiral medium," Optics Express, Vol. 13, No. 13, 4974-4979, 2005.
doi:10.1364/OPEX.13.004974        Google Scholar

38. Monzon, C. and D. W. Forester, "Negative refraction and focusing of circularly polarized waves in optically active media," Phys. Rev. Lett., Vol. 95, 123904, 2005.
doi:10.1103/PhysRevLett.95.123904        Google Scholar

39. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, 033108, 2009.
doi:10.1103/PhysRevB.80.033108        Google Scholar

40. Cheng, Q., W. X. Jiang, and T. J. Cui, "Investigations of the electromagnetic properties of three-dimensional arbitrarily-shaped cloaks," Progress In Electromagnetics Research, Vol. 94, 105-117, 2009.
doi:10.2528/PIER09060705        Google Scholar

41. Luo, Y., J. Zhang, H. Chen, B.-I. Wu, and L.-X. Ran, "Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect," Progress In Electromagnetics Research, Vol. 95, 167-178, 2009.
doi:10.2528/PIER09070805        Google Scholar

42. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, 1994.

43. Serdyukov, A., I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials Theory and Applications, Gordon and Breach Science Publishers, 2001.

44. Zhao, R., T. Koschny, and C. M. Soukoulis, "Chiral metamaterials: Retrieval of the effective parameters with and without substrate," Optics Express, Vol. 18, No. 14, Jul. 2010.        Google Scholar

45. Balanis, C. A., Modern Antenna Handbook, John Wiley & Sons, 2008.
doi:10.1002/9780470294154

46. Kraus, J. D. and R. J. Marhefka, Antennas: For All Applications, 3rd Ed., McGraw Hill, 2001.