1. Mostafavi, M. and W. C. Lan, "Polynomial characterization of inhomogeneous media and their reconstruction using an open-ended waveguide," IEEE Trans. Antennas Propag., Vol. 41, No. 6, 822-824, 1993.
doi:10.1109/8.250467 Google Scholar
2. Sanadiki, B. and M. Mostafavi, "Inversion of inhomogeneous continuously varying dielectric profiles using open-ended waveguides," IEEE Trans. Antennas Propag., Vol. 39, No. 2, 158-163, 1991.
doi:10.1109/8.68177 Google Scholar
3. Bois, K. J., A. Benally, and R. Zoughi, "Multimode solution for the reflection properties of an open-ended rectangular waveguide radiating into a dielectric half-space: The forward and inverse problems," IEEE Trans. Instrum. Meas., Vol. 48, No. 6, 1131-1140, 1999.
doi:10.1109/19.816127 Google Scholar
4. Ganchev, S. I., S. Bakhtiari, and R. Zoughi, "A novel numerical technique for dielectric measurement of generally lossy dielectrics," IEEE Trans. Instrum. Meas., Vol. 41, No. 3, 361-365, 1992.
doi:10.1109/19.153329 Google Scholar
5. Folgerø, K. and T. Tjomsland, "Permittivity measurement of thin liquid layers using open-ended coaxial probes," Meas. Sci. Technol., Vol. 7, No. 8, 1164, 1996, Available: http://stacks.iop.org/0957-0233/7/i=8/a=012.
doi:10.1088/0957-0233/7/8/012 Google Scholar
6. Wu, M., X. Yao, and L. Zhang, "An improved coaxial probe technique for measuring microwave permittivity of thin dielectric materials," Meas. Sci. Technol., Vol. 11, No. 11, 1617, 2000, Available: http://stacks.iop.org/0957-0233/11/i=11/a=311.
doi:10.1088/0957-0233/11/11/311 Google Scholar
7. Wu, M., X. Yao, J. Zhai, and L. Zhang, "Determination of microwave complex permittivity of particulate materials," Meas. Sci. Technol., Vol. 12, No. 11, 1932, 2001.
doi:10.1088/0957-0233/12/11/324 Google Scholar
8. Shin, D. H. and H. J. Eom, "Estimation of dielectric slab permittivity using a flared coaxial line," Radio Sci., Vol. 38, No. 2, 2003.
doi:10.1029/2002RS002776 Google Scholar
9. Olmi, R., M. Bini, R. Nesti, G. Pelosi, and C. Riminesi, "Improvement of the permittivity measurement by a 3D full-wave analysis of a finite flanged coaxial probe," Journal of Electromagnetic Waves and Applications, Vol. 18, 217-232, 2004.
doi:10.1163/156939304323062103 Google Scholar
10. Baker-Jarvis, J., M. D. Janezic, P. D. Domich, and R. G. Geyer, "Analysis of an open-ended coaxial probe with lift-off for nondestructive testing," IEEE Trans. Instrum. Meas., Vol. 43, No. 5, 711-718, 1994.
doi:10.1109/19.328897 Google Scholar
11. Li, C. L. and K. M. Chen, "Determination of electromagnetic properties of materials using flanged open-ended coaxial probe --- Full-wave analysis," IEEE Trans. Instrum. Meas., Vol. 44, No. 1, 19-27, 1995.
doi:10.1109/19.368108 Google Scholar
12. Chang, C. W., K. M. Chen, and J. Qian, "Nondestructive measurements of complex tensor permittivity of anisotropic materials using a waveguide probe system," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 7, 1081-1090, 1996.
doi:10.1109/22.508641 Google Scholar
13. Tantot, O., M. Chatard-Moulin, and P. Guillon, "Measurement of complex permittivity and permeability and thickness of multilayered medium by an open-ended waveguide method," IEEE Trans. Instrum. Meas., Vol. 46, No. 2, 519-522, 1997.
doi:10.1109/19.571900 Google Scholar
14. Chang, C. W., K. M. Chen, and J. Qian, "Nondestructive determination of electromagnetic parameters of dielectric materials at X-band frequencies using a waveguide probe system," IEEE Trans. Instrum. Meas., Vol. 46, No. 5, 1084-1092, 1997.
doi:10.1109/19.676717 Google Scholar
15. Yeh, C. Y. and R. Zoughi, "A novel microwave method for detection of long surface cracks in metals," IEEE Trans. Instrum. Meas., Vol. 43, No. 5, 719-725, 1994.
doi:10.1109/19.328896 Google Scholar
16. Huber, C., H. Abiri, S. I. Ganchev, and R. Zoughi, "Modeling of surface hairline-crack detection in metals under coatings using an open-ended rectangular waveguide," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 11, 2049-2057, 1997.
doi:10.1109/22.644234 Google Scholar
17. Nadakuduti, J., G. Chen, and R. Zoughi, "Semiempirical electromagnetic modeling of crack detection and sizing in cement-based materials using near-field microwave methods," IEEE Trans. Instrum. Meas., Vol. 55, No. 2, 588-597, 2006.
doi:10.1109/TIM.2006.870132 Google Scholar
18. Mazlumi, F., S. H. H. Sadeghi, and R. Moini, "Interaction of an open-ended rectangular waveguide probe with an arbitrary-shape surface crack in a lossy conductor," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 10, 3706-3711, 2006.
doi:10.1109/TMTT.2006.882879 Google Scholar
19. McClanahan, A., S. Kharkovsky, A. R. Maxon, R. Zoughi, and D. D. Palmer, "Depth evaluation of shallow surface cracks in metals using rectangular waveguides at millimeter-wave frequencies," IEEE Trans. Instrum. Meas., Vol. 59, No. 6, 1693-1704, 2010.
doi:10.1109/TIM.2009.2027780 Google Scholar
20. Bao, J. Z., S. T. Lu, and W. D. Hurt, "Complex dielectric measurements and analysis of brain tissues in the radio and microwave frequencies," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 10, 1730-1741, 1997.
doi:10.1109/22.641720 Google Scholar
21. Popovic, D., L. McCartney, C. Beasley, M. Lazebnik, M. Okoniewski, S. C. Hagness, and J. H. Booske, "Precision open-ended coaxial probes for in vivo and ex vivo dielectric spectroscopy of biological tissues at microwave frequencies," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 5, 1713-1722, 2005.
doi:10.1109/TMTT.2005.847111 Google Scholar
22. Chen, C. P., Z. Ma, T. Anada, and J.-P. Hsu, "Further study on two-thickness-method for simultaneous measurement of complex EM parameters based on open-ended coaxial probe," Proceedings of the European Microwave Conference, October 2005. Google Scholar
23. Stewart, J. W. and M. J. Havrilla, "Electromagnetic characterization of a magnetic material using an open-ended waveguide probe and a rigorous full-wave multimode model," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2037-2052, 2006.
doi:10.1163/156939306779322693 Google Scholar
24. Maode, N., S. Yong, Y. Jinkui, F. Chenpeng, and X. Deming, "An improved open-ended waveguide measurement technique on parameters εr and μr of high-loss materials," IEEE Trans. Instrum. Meas., Vol. 47, No. 2, 476-481, 1998.
doi:10.1109/19.744194 Google Scholar
25. Dester, G. D., E. J. Rothwell, M. J. Havrilla, and M. W. Hyde IV, "Error analysis of a two-layer method for the electromagnetic characterization of conductor-backed absorbing material using an open-ended waveguide probe," Progress In Electromagnetics Research B, Vol. 26, 1-21, 2010.
doi:10.2528/PIERB10080506 Google Scholar
26. Wang, S., M. Niu, and D. Xu, "A frequency-varying method for simultaneous measurement of complex permittivity and permeability with an open-ended coaxial probe," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 12, 2145-2147, 1998.
doi:10.1109/22.739296 Google Scholar
27. Hyde, M. W. and M. J. Havrilla, "A nondestructive technique for determining complex permittivity and permeability of magnetic sheet materials using two flanged rectangular waveguides," Progress In Electromagnetics Research, Vol. 79, 367-386, 2008.
doi:10.2528/PIER07102405 Google Scholar
28. Baker-Jarvis, J. and M. D. Janezic, "Analysis of a two-port flanged coaxial holder for shielding effectiveness and dielectric measurements of thin films and thin materials," IEEE Trans. Electromagn. Compat., Vol. 38, No. 1, 67-70, 1996.
doi:10.1109/15.485697 Google Scholar
29. Hyde, M. W., J. W. Stewart, M. J. Havrilla, W. P. Baker, E. J. Rothwell, and D. P. Nyquist, "Nondestructive electromagnetic material characterization using a dual waveguide probe: A full wave solution," Radio Sci., Vol. 44, No. RS3013, 2009. Google Scholar
30. Hyde, M. W., M. J. Havrilla, A. E. Bogle, and E. J. Rothwell, "Nondestructive material characterization of a free-space-backed magnetic material using a dual-waveguide probe," IEEE Trans. Antennas Propag., In Press, 2011, Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6058602&isnumber=4907023. Google Scholar
31. Collin, R. E., Field Theory of Guided Waves, 2nd Ed., IEEE Press, 1991.
32. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, IEEE Press, 1998.
33. Harrington, R., Field Computation by Moment Methods, IEEE Press, 1993.
doi:10.1109/9780470544631
34. Emerson & Cuming Microwave Products, Inc. "ECCOSORB®FGM Permittivity & Permeability Data,", 2007, Available: http://www.eccosorb.com/Collateral/Documents/English-US/Electrical%20Parameters/FGM%20Electrical%20Parameters.pdf.. Google Scholar
35. Dester, G. D., E. J. Rothwell, and M. J. Havrilla, "An extrapolation method for improving waveguide probe material characterization accuracy," IEEE Microwave Wireless Compon. Lett., Vol. 20, No. 5, 298-300, 2010.
doi:10.1109/LMWC.2010.2045600 Google Scholar
36. Hyde, M. W. and M. J. Havrilla, "Electromagnetic characterization of two-layer dielectrics using two flanged rectangular waveguides," Proceedings of the IEEE Instrumentation and Measurement Technology Conference, 1648-1652, 2008.
doi:10.1109/IMTC.2008.4547308 Google Scholar
37. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932 Google Scholar
38. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382 Google Scholar
39. Madsen, K., H. B. Nielsen, and O. Tingleff, Methods for Nonlinear Least Squares Problems, Technical University of Denmark, 2004.
40. Engen, G. F. and C. A. Hoer, "Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Trans. Microwave Theory Tech., Vol. 27, No. 12, 987-993, 1979.
doi:10.1109/TMTT.1979.1129778 Google Scholar
41. Hyde, M. W., M. J. Havrilla, and A. E. Bogle, "A novel and simple technique for measuring low-loss materials using the flanged-waveguide measurement geometry," Meas. Sci. Technol., Vol. 22, No. 8, 085704, 2011.
doi:10.1088/0957-0233/22/8/085704 Google Scholar
42. Agilent Technologies, Inc. "Technical specifications Agilent Technologies PNA series network analyzers E8362B/C, E8363B/C, and E8364B/C,", 2008. Google Scholar