Vol. 123
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-12-14
Nondestructive Complex Permittivity and Permeability Extraction Using a Two-Layer Dual-Waveguide Probe Measurement Geometry
By
Progress In Electromagnetics Research, Vol. 123, 123-142, 2012
Abstract
A two-layer dual-waveguide probe measurement geometry is proposed to nondestructively measure the complex permittivity and permeability of planar materials. The new measurement structure consists of two rectangular waveguides attached to a PEC flange plate that is placed against the material under test, followed by a known material layer backed by a PEC. The purpose for this new measurement geometry is to improve the permittivity results obtained using the existing dual-waveguide probe geometries, namely, the PEC-backed and free-space-backed geometries, by permitting a larger electric field into the material under test and increasing the field coupling between the two rectangular waveguide apertures. The theoretical development of the technique is presented extending the existing single-layer PEC-backed method to the proposed two-layer dual-waveguide probe method. The new measurement structure is theoretically analyzed by replacing the waveguide apertures with equivalent magnetic currents as stipulated by Love's equivalence theorem. Making use of the magnetic-current-excited two-layer parallel-plate Green's function and enforcing the continuity of the transverse magnetic fields over the waveguide apertures results in a system of coupled magnetic field integral equations. These coupled magnetic field integral equations are then solved for the theoretical reflection and transmission coefficients using the Method of Moments. The desired complex permittivity and permeability of the material under test are found by minimizing the root-mean-square difference between the theoretical and measured reflection and transmission coefficients, i.e., numerical inversion. Last, experimental results utilizing the new two-layer technique are presented for two magnetic shielding materials and subsequently compared to the existing PEC-backed and free-space-backed dual-waveguide probe geometries.
Citation
Michael D. Seal Milo Hyde IV Michael John Havrilla , "Nondestructive Complex Permittivity and Permeability Extraction Using a Two-Layer Dual-Waveguide Probe Measurement Geometry," Progress In Electromagnetics Research, Vol. 123, 123-142, 2012.
doi:10.2528/PIER11111108
http://www.jpier.org/PIER/pier.php?paper=11111108
References

1. Mostafavi, M. and W. C. Lan, "Polynomial characterization of inhomogeneous media and their reconstruction using an open-ended waveguide," IEEE Trans. Antennas Propag., Vol. 41, No. 6, 822-824, 1993.
doi:10.1109/8.250467

2. Sanadiki, B. and M. Mostafavi, "Inversion of inhomogeneous continuously varying dielectric profiles using open-ended waveguides," IEEE Trans. Antennas Propag., Vol. 39, No. 2, 158-163, 1991.
doi:10.1109/8.68177

3. Bois, K. J., A. Benally, and R. Zoughi, "Multimode solution for the reflection properties of an open-ended rectangular waveguide radiating into a dielectric half-space: The forward and inverse problems," IEEE Trans. Instrum. Meas., Vol. 48, No. 6, 1131-1140, 1999.
doi:10.1109/19.816127

4. Ganchev, S. I., S. Bakhtiari, and R. Zoughi, "A novel numerical technique for dielectric measurement of generally lossy dielectrics," IEEE Trans. Instrum. Meas., Vol. 41, No. 3, 361-365, 1992.
doi:10.1109/19.153329

5. Folgerø, K. and T. Tjomsland, "Permittivity measurement of thin liquid layers using open-ended coaxial probes," Meas. Sci. Technol., Vol. 7, No. 8, 1164, 1996, Available: http://stacks.iop.org/0957-0233/7/i=8/a=012.
doi:10.1088/0957-0233/7/8/012

6. Wu, M., X. Yao, and L. Zhang, "An improved coaxial probe technique for measuring microwave permittivity of thin dielectric materials," Meas. Sci. Technol., Vol. 11, No. 11, 1617, 2000, Available: http://stacks.iop.org/0957-0233/11/i=11/a=311.
doi:10.1088/0957-0233/11/11/311

7. Wu, M., X. Yao, J. Zhai, and L. Zhang, "Determination of microwave complex permittivity of particulate materials," Meas. Sci. Technol., Vol. 12, No. 11, 1932, 2001.
doi:10.1088/0957-0233/12/11/324

8. Shin, D. H. and H. J. Eom, "Estimation of dielectric slab permittivity using a flared coaxial line," Radio Sci., Vol. 38, No. 2, 2003.
doi:10.1029/2002RS002776

9. Olmi, R., M. Bini, R. Nesti, G. Pelosi, and C. Riminesi, "Improvement of the permittivity measurement by a 3D full-wave analysis of a finite flanged coaxial probe," Journal of Electromagnetic Waves and Applications, Vol. 18, 217-232, 2004.
doi:10.1163/156939304323062103

10. Baker-Jarvis, J., M. D. Janezic, P. D. Domich, and R. G. Geyer, "Analysis of an open-ended coaxial probe with lift-off for nondestructive testing," IEEE Trans. Instrum. Meas., Vol. 43, No. 5, 711-718, 1994.
doi:10.1109/19.328897

11. Li, C. L. and K. M. Chen, "Determination of electromagnetic properties of materials using flanged open-ended coaxial probe --- Full-wave analysis," IEEE Trans. Instrum. Meas., Vol. 44, No. 1, 19-27, 1995.
doi:10.1109/19.368108

12. Chang, C. W., K. M. Chen, and J. Qian, "Nondestructive measurements of complex tensor permittivity of anisotropic materials using a waveguide probe system," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 7, 1081-1090, 1996.
doi:10.1109/22.508641

13. Tantot, O., M. Chatard-Moulin, and P. Guillon, "Measurement of complex permittivity and permeability and thickness of multilayered medium by an open-ended waveguide method," IEEE Trans. Instrum. Meas., Vol. 46, No. 2, 519-522, 1997.
doi:10.1109/19.571900

14. Chang, C. W., K. M. Chen, and J. Qian, "Nondestructive determination of electromagnetic parameters of dielectric materials at X-band frequencies using a waveguide probe system," IEEE Trans. Instrum. Meas., Vol. 46, No. 5, 1084-1092, 1997.
doi:10.1109/19.676717

15. Yeh, C. Y. and R. Zoughi, "A novel microwave method for detection of long surface cracks in metals," IEEE Trans. Instrum. Meas., Vol. 43, No. 5, 719-725, 1994.
doi:10.1109/19.328896

16. Huber, C., H. Abiri, S. I. Ganchev, and R. Zoughi, "Modeling of surface hairline-crack detection in metals under coatings using an open-ended rectangular waveguide," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 11, 2049-2057, 1997.
doi:10.1109/22.644234

17. Nadakuduti, J., G. Chen, and R. Zoughi, "Semiempirical electromagnetic modeling of crack detection and sizing in cement-based materials using near-field microwave methods," IEEE Trans. Instrum. Meas., Vol. 55, No. 2, 588-597, 2006.
doi:10.1109/TIM.2006.870132

18. Mazlumi, F., S. H. H. Sadeghi, and R. Moini, "Interaction of an open-ended rectangular waveguide probe with an arbitrary-shape surface crack in a lossy conductor," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 10, 3706-3711, 2006.
doi:10.1109/TMTT.2006.882879

19. McClanahan, A., S. Kharkovsky, A. R. Maxon, R. Zoughi, and D. D. Palmer, "Depth evaluation of shallow surface cracks in metals using rectangular waveguides at millimeter-wave frequencies," IEEE Trans. Instrum. Meas., Vol. 59, No. 6, 1693-1704, 2010.
doi:10.1109/TIM.2009.2027780

20. Bao, J. Z., S. T. Lu, and W. D. Hurt, "Complex dielectric measurements and analysis of brain tissues in the radio and microwave frequencies," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 10, 1730-1741, 1997.
doi:10.1109/22.641720

21. Popovic, D., L. McCartney, C. Beasley, M. Lazebnik, M. Okoniewski, S. C. Hagness, and J. H. Booske, "Precision open-ended coaxial probes for in vivo and ex vivo dielectric spectroscopy of biological tissues at microwave frequencies," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 5, 1713-1722, 2005.
doi:10.1109/TMTT.2005.847111

22. Chen, C. P., Z. Ma, T. Anada, and J.-P. Hsu, "Further study on two-thickness-method for simultaneous measurement of complex EM parameters based on open-ended coaxial probe," Proceedings of the European Microwave Conference, October 2005.

23. Stewart, J. W. and M. J. Havrilla, "Electromagnetic characterization of a magnetic material using an open-ended waveguide probe and a rigorous full-wave multimode model," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2037-2052, 2006.
doi:10.1163/156939306779322693

24. Maode, N., S. Yong, Y. Jinkui, F. Chenpeng, and X. Deming, "An improved open-ended waveguide measurement technique on parameters εr and μr of high-loss materials," IEEE Trans. Instrum. Meas., Vol. 47, No. 2, 476-481, 1998.
doi:10.1109/19.744194

25. Dester, G. D., E. J. Rothwell, M. J. Havrilla, and M. W. Hyde IV, "Error analysis of a two-layer method for the electromagnetic characterization of conductor-backed absorbing material using an open-ended waveguide probe," Progress In Electromagnetics Research B, Vol. 26, 1-21, 2010.
doi:10.2528/PIERB10080506

26. Wang, S., M. Niu, and D. Xu, "A frequency-varying method for simultaneous measurement of complex permittivity and permeability with an open-ended coaxial probe," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 12, 2145-2147, 1998.
doi:10.1109/22.739296

27. Hyde, M. W. and M. J. Havrilla, "A nondestructive technique for determining complex permittivity and permeability of magnetic sheet materials using two flanged rectangular waveguides," Progress In Electromagnetics Research, Vol. 79, 367-386, 2008.
doi:10.2528/PIER07102405

28. Baker-Jarvis, J. and M. D. Janezic, "Analysis of a two-port flanged coaxial holder for shielding effectiveness and dielectric measurements of thin films and thin materials," IEEE Trans. Electromagn. Compat., Vol. 38, No. 1, 67-70, 1996.
doi:10.1109/15.485697

29. Hyde, M. W., J. W. Stewart, M. J. Havrilla, W. P. Baker, E. J. Rothwell, and D. P. Nyquist, "Nondestructive electromagnetic material characterization using a dual waveguide probe: A full wave solution," Radio Sci., Vol. 44, No. RS3013, 2009.

30. Hyde, M. W., M. J. Havrilla, A. E. Bogle, and E. J. Rothwell, "Nondestructive material characterization of a free-space-backed magnetic material using a dual-waveguide probe," IEEE Trans. Antennas Propag., In Press, 2011, Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6058602&isnumber=4907023.

31. Collin, R. E., Field Theory of Guided Waves, 2nd Ed., IEEE Press, New York, 1991.

32. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, IEEE Press, New York, 1998.

33. Harrington, R., Field Computation by Moment Methods, IEEE Press, New York, 1993.
doi:10.1109/9780470544631

34. Emerson & Cuming Microwave Products, Inc., "ECCOSORB®FGM Permittivity & Permeability Data,", 2007, Available: http://www.eccosorb.com/Collateral/Documents/English-US/Electrical%20Parameters/FGM%20Electrical%20Parameters.pdf..

35. Dester, G. D., E. J. Rothwell, and M. J. Havrilla, "An extrapolation method for improving waveguide probe material characterization accuracy," IEEE Microwave Wireless Compon. Lett., Vol. 20, No. 5, 298-300, 2010.
doi:10.1109/LMWC.2010.2045600

36. Hyde, M. W. and M. J. Havrilla, "Electromagnetic characterization of two-layer dielectrics using two flanged rectangular waveguides," Proceedings of the IEEE Instrumentation and Measurement Technology Conference, 1648-1652, 2008.
doi:10.1109/IMTC.2008.4547308

37. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

38. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382

39. Madsen, K., H. B. Nielsen, and O. Tingleff, Methods for Nonlinear Least Squares Problems, Technical University of Denmark, 2004.

40. Engen, G. F. and C. A. Hoer, "Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Trans. Microwave Theory Tech., Vol. 27, No. 12, 987-993, 1979.
doi:10.1109/TMTT.1979.1129778

41. Hyde, M. W., M. J. Havrilla, and A. E. Bogle, "A novel and simple technique for measuring low-loss materials using the flanged-waveguide measurement geometry," Meas. Sci. Technol., Vol. 22, No. 8, 085704, 2011.
doi:10.1088/0957-0233/22/8/085704

42. Agilent Technologies, Inc., "Technical specifications Agilent Technologies PNA series network analyzers E8362B/C, E8363B/C, and E8364B/C,", 2008.