Vol. 124
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-01-20
Coupling Effect of Split Ring Resonator and Its Mirror Image
By
Progress In Electromagnetics Research, Vol. 124, 233-247, 2012
Abstract
We report on experimental and numerical studies on the coupling effect of a single split ring resonator (SRR) and its mirror image inside an X-band hollow waveguide. It is shown that, for single SRR with gap bearing side perpendicular to $E$ field, the magnetic resonance exhibits red/blue shift as SRR moves to the gap facing/backing waveguide edge, due to the capacitance and magnetic dipoles coupling effect between original SRR and its mirror image, respectively. Furthermore, electric dipole interplay dominates the coupling effect between SRR and its image when SRR has the gap bearing side parallel to the E field, although SRR is excited by E and H field simultaneously.
Citation
Fuli Zhang, Qian Zhao, Jingbo Sun, Ji Zhou, and Didier Lippens, "Coupling Effect of Split Ring Resonator and Its Mirror Image," Progress In Electromagnetics Research, Vol. 124, 233-247, 2012.
doi:10.2528/PIER11121808
References

1. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.        Google Scholar

2. Enoch, S., G. Tayeb, P. Sabouroux, and P. Vincont, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, 213902, 2002.        Google Scholar

3. Edwards, B., A. Alµu, M. E. Young, M. Silveirinha, and N. Engheta, "Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide," Phys. Rev. Lett., Vol. 100, 033903, 2008.        Google Scholar

4. Kang, L., V. Sadaune, and D. Lippens, "Numerical analysis of enhanced transmission through a single subwavelength aperture based on mie resonance single particle," Progress In Electromagnetics Research, Vol. 113, 211-226, 2011.        Google Scholar

5. Liu, L., J. Sun, X. Fu, J. Zhou, Q. Zhao, B. Fu, J. Liao, and D. Lippens, "Artificial magnetic properties of dielectric metamaterials in terms of e®ective circuit model," Progress In Electromagnetics Research, Vol. 116, 159-170, 2011.        Google Scholar

6. Jin, Y. and S. He, "Enhancing and suppressing radiation with some permeability-near-zero structures," Opt. Express, Vol. 18, 16587-16593, 2010.        Google Scholar

7. Wu, Z., B.-Q. Zeng, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.        Google Scholar

8. Pu, T. L., K. M. Huan, B. Wang, and Y. Yang, "Application of micro-genetic algorithm to the design of matched high gain patch antenna with zero-refractive-index metamaterial lens," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1207-1217, 2010.        Google Scholar

9. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.        Google Scholar

10. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.        Google Scholar

11. Ma, H. F. and T. J. Cui, "Three-dimensional broadband ground-plane cloak made of metamaterials," Nature Comm., Vol. 1, 21, 2010.        Google Scholar

12. Shao, J., H. Zhang, Y. Lin, and H. Xin, "Dual-frequency electromagnetic cloaks enabled by lc-based metamaterial circuits," Progress In Electromagnetics Research, Vol. 119, 225-237, 2011.        Google Scholar

13. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, 366-369, 2009.        Google Scholar

14. Gaillot, D. P., C. Croenne, and D. Lippens, "An all dielectric route for Terahertz cloaking," Opt. Express, Vol. 16, 3986-3992, 2008.        Google Scholar

15. Ma, H., S. Qu, Z. Xu, and J. Wang, "Approximation approach of designing practical cloaks with arbitrary shapes," Opt. Express, Vol. 16, 15449-15454, 2008.        Google Scholar

16. Agarwal, K., X. Chen, L. Hu, H. Liu, and G. Uhlmann, "Polarization-invariant directional cloaking by transformation optics," Progress In Electromagnetics Research, Vol. 118, 415-423, 2011.        Google Scholar

17. Cheng, X., H. Chen, X.-M. Zhang, B. Zhang, and B.-I. Wu, "Cloaking a perfectly conducting sphere with rotationally uniaxial nihility media in monostatic radar system," Progress In Electromagnetics Research, Vol. 100, 285-298, 2010.        Google Scholar

18. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nat. Mater., Vol. 8, 568-571, 2009.        Google Scholar

19. Chen, X., "Implicit boundary conditions in transformation-optics cloaking for electromagneticwaves," Progress In Electromagnetics Research, Vol. 121, 521-534, 2011.        Google Scholar

20. Chen, X., Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, "Macroscopic invisibility cloaking of visible light," Nature Comm., Vol. 2, 176, 2011.        Google Scholar

21. Zhang, B., Y. Luo, X. Liu, and G. Barbastathis, "Macroscopic invisibility cloak for visible light," Phys. Rev. Lett., Vol. 106, 033901, 2011.        Google Scholar

22. Chen, H., B.-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, 063903, 2007.        Google Scholar

23. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.        Google Scholar

24. Ma, H. F. and T. J. Cui, "Three-dimensional broadband and broad-angle transformation-optics lens," Nature Comm., Vol. 1, 124, 2011.        Google Scholar

25. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.        Google Scholar

26. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.        Google Scholar

27. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.        Google Scholar

28. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.        Google Scholar

29. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.        Google Scholar

30. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, 2075-2084, 1999.        Google Scholar

31. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design ---Theory and experiments," IEEE Trans. Antennas Propag., Vol. 51, 2572-2581, 2003.        Google Scholar

32. Chen, H., L.-X. Ran, B.-I.Wu, J. A. Kong, and T. M. Grzegorczyk, "Crankled S-ring resonator with small electrical size," Progress In Electromagnetics Research, Vol. 66, 179-190, 2006.        Google Scholar

33. Chen, H., L.-X. Ran, J. T. Huang-Fu, X.-M. Zhang, K.-S. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Magnetic properties of S-shaped split-ring resonators," Progress In Electromagnetics Research, Vol. 51, 231-247, 2005.        Google Scholar

34. Yao, H.-Y., X.Wei, L.-W. Li, Q.Wu, and T.-S. Yeo, "Propagation property analysis of metamaterial constructed by conductive srrs and wires using the mgs-based algorithm," IEEE Trans. Microw. Theory Tech., Vol. 53, 1469, 2005.        Google Scholar

35. Carbonell, J., L. A. Borja, E. V. Boria, and D. Lippens, "Duality and superposition in split-ring-resonator-loaded planar transmission lines," IEEE Antennas Wireless Propag. Lett., Vol. 8, 886-889, 2009.        Google Scholar

36. Zhou, L., X. Huang, Y. Zhang, and S.-T. Chui, "Resonance properties of metallic ring systems," Mater. Today, Vol. 12, 52-59, 2009.        Google Scholar

37. Soukoulis, C. M. and M. Wegener, "Past achievements and future challenges in the development of three-dimensional photonic metamaterials," Nat. Photon., Vol. 5, 523-530, 2011.        Google Scholar

38. Gil, I., J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electron. Lett., Vol. 40, 1347-1348, 2004.        Google Scholar

39. NaghshvarianJahromi, M., "Novel compact meta-material tunable quasi elliptic band-pass filter using microstrip to slotline transition," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2371-2382, 2010.        Google Scholar

40. Park, W.-Y. and S. Lim, "Bandwidth tunable and compact band-pass filter (BPF) using complementary split ring resonators (CSRRs) on substrate integrated waveguide (SIW)," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2407-2417, 2010.        Google Scholar

41. Chen, H., B.-I. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett., Vol. 89, 053509, 2006.        Google Scholar

42. Feng, T., Y. Li, H. Jiang, W. Li, F. Yang, X. Dong, and H. Chen, "Tunable single-negative metamaterials based on microstrip transmission line with varactor diodes loading," Progress In Electromagnetics Research, Vol. 120, 35-50, 2011.        Google Scholar

43. Ourir, A., R. Abdeddaim, and J. de Rosny, "Tunable trapped mode in symmetric resonator designed for metamaterials," Progress In Electromagnetics Research, Vol. 101, 115-123, 2010.        Google Scholar

44. Chen, H.-T., J. F. O'Harai, A. K. Azadi, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterial," Nat. Photon., Vol. 2, 295-298, 2008.        Google Scholar

45. Zhang, F., Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, "Magnetic control of negative permeability metamaterials based on liquid crystals," Appl. Phys. Lett., Vol. 92, 193104, 2008.        Google Scholar

46. Lee, , S.-W., Y. Kuga, and A. Ishimaru, "Quasi-static analysis of materials with small tunable stacked split ring resonators," Progress In Electromagnetics Research, Vol. 51, 219-229, 2005.        Google Scholar

47. Khoo, I. C., "Nonlinear optics of liquid crystalline materials," Phys. Rep., Vol. 471, 221-267, 2009.        Google Scholar

48. Liu, Q., Y. Cui, D. Gardner, X. Li, S. He, and I. I. Smalyukh, "Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic °uids for tunable bulk metamaterial applications," Nano. Lett., Vol. 10, 1347-1353, 2010.        Google Scholar

49. Houzet, G., X. Melique, D. Lippens, L. Burgnies, G. Velu, and J.-C. Carru, "Microstrip transmission line loaded by split-ring resonators tuned by ferroelectric thin film," Progress In Electromagnetics Research C, Vol. 12, 225-236, 2010.        Google Scholar

50. Shen, N., M. Massaouti, M. Gokkavas, J. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, "Optically implemented broadband blueshift switch in the terahertz regime," Phys. Rev. Lett., Vol. 106, 037403, 2011.        Google Scholar

51. Gay-Balmaz, P. and J. F. O. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," J. Appl. Phys., Vol. 92, 2929-2936, 2002.        Google Scholar

52. Liu, N. and H. Giessen, "Coupling effects in optical metamaterials," Angew. Chem. Int. Ed., Vol. 49, 9838-9852, 2008.        Google Scholar

53. Liu, N., H. Liu, S. N. Zhu, and H. Giessen, "Stereometamaterials," Nat. Photon., Vol. 3, 157-162, 2009.        Google Scholar

54. Feth, N., M. Konig, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener, and S. Linden, "Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation," Opt. Express, Vol. 18, 6545-6554, 2010.        Google Scholar

55. Sersic, I., M. Frimmer, E. Verhagen, and A. F. Koenderink, "Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays," Phys. Rev. Lett., Vol. 103, 213902, 2010.        Google Scholar

56. Decker, M., S. Linden, and M. Wegener, "Coupling effect in low-symmetry planar split-ring resonator arrays," Opt. Lett., Vol. 34, 1579-1581, 2009.        Google Scholar

57. Penciu, R. S., K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multi-gap individual and coupled split-ring resonator structures," Opt. Express, Vol. 16, 18131-18144, 2008.        Google Scholar

58. Carbonell, J., E. Lheurette, and D. Lippens, "From rejection to transmission with stacked arrays of split ring resonators," Progress In Electromagnetics Research, Vol. 112, 215-224, 2011.        Google Scholar

59. Hesmer, F., E. Tatartschuk, O. Zhuromskyy, A. A. Radkovskaya, M. Shamonin, T. Hao, C. J. Stevens, G. Faulkner, D. J. Edwards, and E. Shamonina, "Coupling mechanisms for split ring resonators: Theory and experiment," Phys. Stat. Sol., Vol. 244, 1170-1175, 2007.        Google Scholar

60. Liu, N., H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Plasmon hybridization in stacked cut-wire metamaterials," Adv. Mater., Vol. 19, 3628-3632, 2007.        Google Scholar

61. Katsarakis, N., T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, 2943-2945, 2004.        Google Scholar