1. Chen, H. T., W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature, Vol. 444, 597, 2006.
doi:10.1038/nature05343 Google Scholar
2. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603 Google Scholar
3. Sajin, G. I., "Impedance measurement of millimeter wave metamaterial antennas by transmission line stubs," Progress In Electromagnetics Research Letters, Vol. 26, 59-68, 2011.
doi:10.2528/PIERL11072004 Google Scholar
4. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
5. Wu, Z., B. Q. Zeng, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.
doi:10.1163/156939310791285173 Google Scholar
6. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
7. Valagiannopoulos, C. A., "Electromagnetic scattering of the field of a metamaterial slab antenna by an arbitrarily positioned cluster of metallic cylinders," Progress In Electromagnetics Research, Vol. 114, 51-66, 2011. Google Scholar
8. Shelby, R. A., D. R. Smith, and S. Shultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77, 2001.
doi:10.1126/science.1058847 Google Scholar
9. Butt, H., Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, "Photonic crystals & metamaterial filters based on 2D arrays of silicon nanopillars," Progress In Electromagnetics Research, Vol. 113, 179-194, 2001. Google Scholar
10. Yuan, Y., L. Ran, H. S. Chen, J. Huangfu, T. M. Grzegorczyk, and J. A. Kong, "Backward coupling waveguide coupler using left-handed material," Appl. Phys. Lett., Vol. 88, 211903, 2006.
doi:10.1063/1.2202199 Google Scholar
11. Bucinskas, J., L. Nickelson, and V. Shugurovas, "Microwave scattering and absorption by a multilayered lossy metamaterial --- Glass cylinder ," Progress In Electromagnetics Research, Vol. 105, 103-118, 2010.
doi:10.2528/PIER10041711 Google Scholar
12. Chen, H. S., B. I.Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett., Vol. 89, 053509, 2006.
doi:10.1063/1.2335382 Google Scholar
13. Sabah, C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306 Google Scholar
14. Withayachumnankul, W. and D. Abbott, "Metamaterials in the terahertz regime," IEEE Photonics Journal, Vol. 1, 99, 2009.
doi:10.1109/JPHOT.2009.2026288 Google Scholar
15. Rahimi, H., A. Namdar, S. Roshan Entezar, and H. Tajalli, "Photonic transmission spectra in one-dimensional fibonacci multilayer structures containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 102, 15-30, 2010.
doi:10.2528/PIER09122303 Google Scholar
16. Zhao, X., L. Zhao, K.-M. Huang, and C.-J. Liu, "A circularly polarized array composed of linear polarized microstrip patches fed by metamaterial transmission line," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1545-1553, 2011.
doi:10.1163/156939311797164927 Google Scholar
17. Tao, H., N. L. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterials absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, 007181, 2008.
doi:10.1364/OE.16.007181 Google Scholar
18. Zhou, H., F. Ding, Y. Jin, and S. L. He, "Terahertz metamaterial modulators based on absorption," Progress In Electromagnetics Research, Vol. 119, 449-460, 2011.
doi:10.2528/PIER11061304 Google Scholar
19. Chen, H. T., W. J. Padilla, J. M. O. Zide, S. R. Rank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices," Opt. Lett., Vol. 32, 001620, 2007.
doi:10.1364/OL.32.001620 Google Scholar
20. Kuznetsov, S. A., A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetics Research, Vol. 122, 93-103, 2012.
doi:10.2528/PIER11101401 Google Scholar
21. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231, 2010.
doi:10.2528/PIER10011110 Google Scholar
22. Chen, H. T., W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, "A metamaterial solid-state terahertz phase modulator," Nature Photonics, Vol. 3, 148-151, 2009.
doi:10.1038/nphoton.2009.3 Google Scholar
23. Zhang, Y. X., S. Qiao, W. X. Huang, W. Ling, and L. Li, "Asymmetric single-particle triple-resonant metamaterial in terahertz band," Appl. Phys. Lett., Vol. 99, 073111, 2011.
doi:10.1063/1.3624828 Google Scholar
24. Cai, M. and E. P. Li, "A novel terahertz sensing device comprising of a parabolic reflective surface and a bi-conical structure," Progress In Electromagnetics Research, Vol. 97, 61-73, 2009.
doi:10.2528/PIER09090902 Google Scholar
25. Padilla, W. J., A. J. Taylor, and C. Highstrete, "Dynamical electric and magnetic metamaterial response at terahertzfrequencies ," Phys. Rev. Lett., Vol. 96, 107401, 2006.
doi:10.1103/PhysRevLett.96.107401 Google Scholar
26. Guo, Y. and R. Xu, "Planar metamaterials supporting multiple left-handed modes," Progress In Electromagnetics Research, Vol. 66, 239-251, 2006.
doi:10.2528/PIER06113001 Google Scholar
27. Azad, A. K., A. J. Taylor, E. Smirnova, and J. F. O'Hara, "Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett., Vol. 92, 011119, 2008.
doi:10.1063/1.2829791 Google Scholar
28. Tang, M. C., S.-Q. Xiao, T. Deng, D. Wang, and B.-Z. Wang, "A dual-band epsilon-negative material design using folded-wire structures," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 327-337, 2011.
doi:10.1163/156939311794362696 Google Scholar
29. Cao, W.-Q., B. N. Zhang, T. B. Yu, A. J. Liu, S. J. Zhao, D. S. Guo, and Z. D. Song, "Single-feed dual-band dual-mode and dual-polarized microstrip antenna based on metamaterial structure," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1909-1919, 2011.
doi:10.1163/156939311797453953 Google Scholar
30. Yuan, Y., C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, "Dual-band planar electric metamaterial in the terahertz regime," Opt. Express, Vol. 16, 9746-9752, 2008.
doi:10.1364/OE.16.009746 Google Scholar
31. Yuan, Y., C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, "A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators," Appl. Phys. Lett., Vol. 93, 191110, 2008.
doi:10.1063/1.3026171 Google Scholar
32. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011. Google Scholar
33. Wang, J. F., S. B. Qu, Y. M. Yang, H. Ma, X. Wu, and Z. Xu, "Multiband left-handed metamaterials," Appl. Phys. Lett., Vol. 95, 014105, 2009.
doi:10.1063/1.3170236 Google Scholar
34. Chen, H. T., J. F. O'Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, "Complementary planar terahertz metamaterials," Opt. Express, Vol. 15, 001084, 2007.
doi:10.1364/OE.15.001084 Google Scholar
35. Rockstuhl, C., T. Zentgraf, T. P. Meyrath, H. Giessen, and F. Lederer, "Resonances in complementary metamaterials and nanoapertures," Opt. Express, Vol. 16, 002080, 2008.
doi:10.1364/OE.16.002080 Google Scholar
36. Hand, T. H., J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, "Characterization of complementary electric field coupled resonant surfaces," Appl. Phys. Lett., Vol. 93, 212504, 2008.
doi:10.1063/1.3037215 Google Scholar
37. Edmunds, J. D., M. C. Taylor, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, "Babinet's principle and the band structure of surface waves on patterned metal arrays," J. Appl. Phys., Vol. 107, 103108, 2010.
doi:10.1063/1.3406145 Google Scholar
38. Bitzer, A., A. Ortner, H. Merbold, T. Feurer, and M. Walther, "Terahertz near-field microscopy of complementary planar metamaterials: Babinet's principle," Opt. Express, Vol. 19, 002537, 2011.
doi:10.1364/OE.19.002537 Google Scholar
39. Zentgraf, T., T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, and F. Lederer, "Babinet's principle for optical frequency metamaterials and nanoantennas," Phys. Rev. B, Vol. 76, 033407, 2007.
doi:10.1103/PhysRevB.76.033407 Google Scholar