1. Bozzetti, M., G. Calò, A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, "Optimized design of GTEM cells for dosimetric experiments," Radio Science, Vol. 42, RS3017, 2007.
doi:10.1029/2006RS003457 Google Scholar
2. Schuderer, J., T. Samaras, W. Oesch, D. Spät, and N. Kuster, "High peak SAR exposure unit with tight exposure and environmental control for in vitro experiments at 1800 MHz," IEEE Trans. Microwave Theory Tech., Vol. 52, 2057-2066, 2004.
doi:10.1109/TMTT.2004.832009 Google Scholar
3. Laval, L., P. Leveque, and B. Jecko, "A new in vitro exposure device for the mobile frequency of 900 MHz," Bioelectromagnetics, Vol. 21, 255-263, 2000.
doi:10.1002/(SICI)1521-186X(200005)21:4<255::AID-BEM2>3.0.CO;2-4 Google Scholar
4. Merola, P., C. Marino, G. A. Lovisolo, R. Pinto, C. Laconi, and A. Negroni, "Proliferation and apoptosis in a neuroblastoma cell line exposed to 900 MHz modulated radiofrequency field," Bioelectromagnetics, Vol. 27, 164-171, 2006.
doi:10.1002/bem.20201 Google Scholar
5. Balzano, Q., C. Chou, R. Cicchetti, A. Faraone, and R. Y.-S. Tay, "An efficient RF exposure system with precise whole-body average SAR determination for in vivo animal studies at 900 MHz," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 11, Part 2, 2040--2049, 2000. Google Scholar
6. Schonborn, F., K. Pokovic, and N. Kuster, "Dosimetric analysis of the carousel setup for the exposure of rats at 1.62 GHz," Bioelectromagnetics, Vol. 25, 16-26, 2004.
doi:10.1002/bem.10153 Google Scholar
7. Biagi, P. F., L. Castellana, T. Maggipinto, G. Maggipinto, T. Ligonzo, L. Schiavulli, D. Loiacono, A. Ermini, M. Lasalvia, G. Perna, and V. Capozzi, "A reverberation chamber to investigate the possible effects of in vivo exposure of rats to 1.8 GHz electromagnetic fields: A preliminary study," Progress In Electromagnetics Research, Vol. 94, 133-152, 2009.
doi:10.2528/PIER09061006 Google Scholar
8. Zhen, J., C. Hagness, H. Booske, S. Mathur, and M. L. Meltz, "FDTD analysis of a gigahertz TEM cell for ultra-wideband pulse exposure studies of biological specimens," IEEE Trans. Biomed. Eng., Vol. 53, No. 5, 780-789, 2006.
doi:10.1109/TBME.2005.863959 Google Scholar
9. Zmyslony, M., P. Politanski, E. Rajkowska, W. Szymczak, and J. Jajte, "Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions," Bioelectromagnetics, Vol. 25, 324-328, 2004.
doi:10.1002/bem.10191 Google Scholar
10. Bakos, J., G. Kubinyi, H. Sinay, and G. Thuroczy, "GSM modulated radiofrequency radiation does not affect 6-sulfatoxymelatonin excretion of rats," Bioelectromagnetics, Vol. 24, 531-534, 2003.
doi:10.1002/bem.10172 Google Scholar
11. Liu, Y., Z. Liang, and Z.-Q. Yang, "Computation of electromagnetic dosimetry for human body using parallel FDTD algorithm combined with interpolation technique," Progress In Electromagnetics Research, Vol. 82, 95-107, 2008.
doi:10.2528/PIER08021603 Google Scholar
12. Zhang, M. and A. Alden, "Calculation of whole-body SAR from a 100MHz dipole antenna," Progress In Electromagnetics Research, Vol. 119, 133-153, 2011.
doi:10.2528/PIER11052005 Google Scholar
13. Yanase, K. and A. Hirata, "Effective resistance of grounded humans for whole-body averaged SAR estimation at resonance frequencies," Progress In Electromagnetics Research B, Vol. 35, 15-27, 2011.
doi:10.2528/PIERB11082511 Google Scholar
14. Taflove, A. and M. E. Brodwin, "Computation of the electromagnetic fields and induced temperatures within a model of the microwave-irradiated human eye," IEEE Trans. Microwave Theory Tech., Vol. 23, No. 11, 888-896, 1975.
doi:10.1109/TMTT.1975.1128708 Google Scholar
15. Mohsin, S. A., "Concentration of the specific absorption rate around deep brain stimulation electrodes during MRI," Progress In Electromagnetics Research, Vol. 121, 469-484, 2011.
doi:10.2528/PIER11022402 Google Scholar
16. Vita, A. De, R. P. Croce, I. M. Pinto, and B. Bisceglia, "Nonlinear interaction of electromagnetic radiation at the cell membrane level: Response to stochastic fields," Progress In Electromagnetics Research B, Vol. 33, 45-67, 2011.
doi:10.2528/PIERB11053005 Google Scholar
17. Angulo, L. D., S. G. Garcia, M. F. Pantoja, C. C. Sanchez, and R. G. Martìn, "Improving the SAR distribution in petri-dish cell cultures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5--6, 815-826, 2010.
doi:10.1163/156939310791036322 Google Scholar
18. Garbe, H. and D. Hansen, "The GTEM cell concept; applications of this new EMC test environment to radiated emission and susceptibility measurements," Proc. 7th Int. Conf. Electromagnetic Compatibility, 152-156, 1990. Google Scholar
19. Christopoulos, C., The Transmission-Line Modelling Method TLM, University of Nottingham, IEEE Press, 1995.
doi:10.1109/9780470546659
20. Hang, J. and R. Vahldieck, "Direct derivations of TLM symmetrical condensed node and hybrid symmetrical condensed node from Maxwell's equations using centered differencing and averaging," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 12, 2554-2561, 1994.
doi:10.1109/22.339796 Google Scholar
21. Bozzetti, M., G. Calò, A. D'Orazio, V. Petruzzelli, F. Prudenzano, N. Diaferia, and C. Bonaventura, "Mode-stirred chamber for cereal disinfestation," Materials Research Innovations, Vol. 8, 17-22, 2004. Google Scholar
22. Lizhuang, M., D. Paul, N. Pothecary, C. Railton, J. Bows, L. Barratt, J. Mullin, and D. Simons, "Experimental validation of a combined electromagnetic and thermal FDTD model of a microwave heating process," IEEE Trans. Microwave Theory Tech., Vol. 43, 2565-2572, 1995.
doi:10.1109/22.473179 Google Scholar
23. Calò, G., F. Lattarulo, and V. Petruzzelli, "GTEM Cell experimental setup for in vitro dosimetry," Journal of Communications Software and Systems, Vol. 3, No. 1, 34-43, 2007. Google Scholar
24. De Leo, R., T. Rozzi, C. Svara, and L. Zappelli, "Rigorous analysis of the GTEM cell," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 3, 488-499, 1991.
doi:10.1109/22.75291 Google Scholar
25. IEC 61000-4-3 "Electromagnetic compatibility (EMC) testing and measurement techniques --- Radiated, radio-frequency, electromagnetic field immunity test,", 2003. Google Scholar
26. Pickard, W. F., W. L. Straube, and E. G. Moros, "Experimental and numerical determination of SAR distributions within culture flasks in a dielectric loaded radial transmission line," IEEE Trans. Biomed. Eng., Vol. 47, No. 2, 202-208, Feb. 2000.
doi:10.1109/10.821756 Google Scholar
27. Lim, H. B., G. G. Cook, A. T. Barker, and L. A. Coulton, "FDTD design of RF dosimetry apparatus to quantify the effects of near fields from mobile handsets on stress response mechanisms of human whole blood," Int. J. Numer. Model., Vol. 15, 563-577, 2002.
doi:10.1002/jnm.465 Google Scholar
28. Holman, J. (ed.), Heat Transfer, 7th Ed., McGraw-Hill, 1990.
29. Incropera, F. P. and D. P. De Witt, Introduction to Heat Transfer, 2nd Ed., John Wiley & Sons, 1990.