1. Markos, P. and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials, Princeton University Press, 2008.
2. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 1995.
3. Sakoda, K., Optical Properties of Photonic Crystals, Springer-Verlag, 2001.
4. Orfanidis, S. J., Electromagnetic Waves and Antennas, Rutger University, 2008, www.ece.rutgers.edu/ orfanidi/ewa.
5. Sàncheza, A. S. and P. Halevi, "Simulation of tuning of one-dimensional photonic crystals in the presence of free electrons and holes," J. Appl. Phys., Vol. 94, 797-799, 2003.
doi:10.1063/1.1579569 Google Scholar
6. Galindo-Linares, E., P. Halevi, and A. S. Sàncheza, "Tuning of one-dimensional Si/SiO2 photonic crystals at the wavelength of 1.54 μm," Solid State Comm., Vol. 142, 67-70, 2007.
doi:10.1016/j.ssc.2007.01.018 Google Scholar
7. Hung, H.-C., C.-J. Wu, and S.-J. Chang, "Terahertz temperature-dependent defect mode in a semiconductor-dielectric photonic crystal," J. Appl. Phys., Vol. 110, 093110, 2011.
doi:10.1063/1.3660230 Google Scholar
8. Yeh, P., Optical Waves in Layered Media, John Wiley & Sons, 1991.
9. Wu, C.-J., B.-H. Chu, and M.-T. Weng, "Analysis of optical reflection in a chirped distributed Bragg reflector," Journal Electromagnetic Waves and Applications, Vol. 23, No. 1, 129-138, 2009.
doi:10.1163/156939309787604643 Google Scholar
10. Li, H., H. Chen, and X. Qiu, "Bandgap extension of disordered 1D binary photonic crystals," Physica B, Vol. 279, No. 1--3, 164-167, 2000.
doi:10.1016/S0921-4526(99)00716-4 Google Scholar
11. Tolmachev, V. A., T. S. Perova, J. A. Pilyugina, and R. A. Moore, "Experimental evidence of photonic band gap extension for disordered 1D photonic crystals based on Si," Optics Comm., Vol. 259, No. 1, 104-106, 2006.
doi:10.1016/j.optcom.2005.08.025 Google Scholar
12. Qi, L., Z. Yang, X. Gao, F. Lan, Z. Shi, and Z. Liang, "Bandgap extension of disordered one-dimensional metallic-dielectric photonic crystals," IEEE International Vacuum Electronics Conference, 158-159, 2008. Google Scholar
13. Wu, C.-J., Y.-N. Rao, and W.-H. Han, "Enhancement of photonic band gap in a disordered quarter-wave dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 100, 27-36, 2010.
doi:10.2528/PIER09111610 Google Scholar
14. Wang, X., X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, "Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures," Appl. Phys. Lett., Vol. 80, No. 23, 4291-4293, 2002.
doi:10.1063/1.1484547 Google Scholar
15. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
doi:10.2528/PIERB07102903 Google Scholar
16. Awasthi, S. K., U. Malaviya, and S. P. Ojha, "Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B: Optical Physics, Vol. 23, 2566-2571, 2006.
doi:10.1364/JOSAB.23.002566 Google Scholar
17. Banerjee, A., "Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals," Progress In Electromagnetics Research, Vol. 89, 11-22, 2009.
doi:10.2528/PIER08112105 Google Scholar
18. Banerjee, A., "Enhanced incidence angle based spectrum tuning by using one-dimensional ternary photonic band gap structures," Journal of Electromagnetic Waves and Applications, Vol. 24, 1023-1032, 2010.
doi:10.1163/156939310791586151 Google Scholar
19. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
doi:10.2528/PIER10012004 Google Scholar
20. Dai, X. Y., Y. J. Xiang, and S. C.Wen, "Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor," Progress In Electromagnetics Research, Vol. 120, 17-34, 2011. Google Scholar
21. Kong, X. K., S.-B. Liu, H.-F. Zhang, C.-Z. Li, and B.-R. Bian, "Omnidirectional photonic band gap of one-dimensional ternary plasma photonic crystals," J. Optics, Vol. 13, 035101, 2011.
doi:10.1088/2040-8978/13/3/035101 Google Scholar
22. Wu, C.-J., Y.-C. Hsieh, and H.-T. Hsu, "Tunable photonic band gap in a doped semiconductor photonic crystal in near infrared region," Progress In Electromagnetics Research, Vol. 114, 271-283, 2011. Google Scholar
23. Morozov, G. V., F. Placido, and D. W. L. Sprung, "Absorptive photonic crystals in 1D," J. Optics, Vol. 13, 035102, 2011.
doi:10.1088/2040-8978/13/3/035102 Google Scholar
24. See http://www.ioffe.ru/SVA/NSM/Semicond/Si/optic.html.
25. Marquez-Islas, R., B. Flores-Desirena, and F. Pérez-Rodríguez, "Exciton polaritons in one-dimensional metal-semiconductor photonic crystal," J. Nanosci. Nanotechnol., Vol. 8, 6584-6588, 2008. Google Scholar
26. Keskinen, M. J., P. Loschialpo, D. Forester, and J. Schelleng, "Photonic band gap structure and transmissivity of metal-dielectric systems," J. Appl. Phys., Vol. 88, 5785-5790, 2000.
doi:10.1063/1.1289045 Google Scholar